Instream Assessment of Biota and Migration Patterns of the South Fork Palouse River Watershed

April 8, 2011

Instream Assessment of Biota and Migration Patterns of the South Fork Palouse River Watershed

Prepared for:

U.S. Environmental Protection Agency, Region 10 1200 Sixth Avenue Seattle, WA 98101

Prepared by:

Tetra Tech, Inc. 1420 Fifth Avenue, Suite 550 Seattle, WA 98101

April 8, 2011

Table of Contents

1.0 INTRO	DDUCTION1-1
1.1 Pro	ject Setting1-1
1.2 Reg	gulatory Issues and Water Quality Studies1-2
1.3 Pur	pose for the Literature Review1-3
1.4 Obj	ectives of the Effort1-3
2.0 METH	IODS2-1
2.1 Lite	erature Review and Professional Interviews2-1
2.1.1	Strategy for initiating the review2-1
2.1.2	Literature Survey2-1
2.1.3	Database review2-2
2.1.4	Personal communications2-2
2.1.5	Compilation of the information and results2-3
2.1.6	Data presentation2-3
2.2 Cur	rent Instream Biological Characterization2-3
3.0 RESU	LTS
3.1 Pre	-European
3.1.1	Physical habitat
3.1.2	Water quality
3.1.3	Biological Conditions
3.2 197	75 to Current
3.2.1	Physical habitat
3.2.2	Water quality
3.2.3	Biological conditions
3.3 Cur	rent Instream Biological Characterization
3.3.1	Physical habitat
3.3.2	Water quality
3.3.3	Biological conditions
4.0 DISCU	JSSION
4.1 Cor	nparisons of Historic and Current Conditions4-1
4.2 Lim	iting Factors
4.3 Cor	clusions
5.0 REFE	RENCES
Appendix A -	– Professional Contact List

Appendix B – Technical Memorandum: Approach and Findings of the Literature Review

- Appendix C Current Instream Biological Characterization Sampling Site Summary Information
- Appendix D Benthic Macroinvertebrate Metric and Biotic Index Summary
- Appendix E Reviewer Comment Matrix

List of Tables

Table 3-1.	Habitat assessment scores of Paradise Creek, October 1992 and February 1993 3-5
Table 3-2.	2005 monthly summary for ambient monitoring stations
Table 3-3.	Mountain View Park water quality data
Table 3-4.	White Avenue and Troy Highway water quality data (Source: Washington Water_Research Center)
Table 3-5.	Sixth Street and Deakin water quality data (Source: Washington Water Research_Center)
Table 3-6.	ID/WA Border water quality data (Source: Washington Water Research Center). 3-10
Table 3-7.	Rates of infection for the various streams and lakes
Table 3-8.	Macroinvertebrate results in Paradise Creek
Table 3-9.	Electrofishing results in Paradise Creek
Table 3-10	• Fish species present in the Palouse Sub-basin, Washington (Cook 2001)
Table 3-11	 Rapid Bioassessment Protocol (RBP) Habitat Scores at study sites in the South Fork Palouse River watershed
Table 3-12	• Substrate characterizations based on modified Wolman pebble counts at study sites in the South Fork Palouse River watershed
Table 3-13	. Percent shading estimates with and without reed canary grass (RCG) at study sites in the South Fork Palouse watershed
Table 3-15	• Fish community data at study sites in the South Fork Palouse watershed, 2010. 3-25
Table 3-16	 Hilsenhoff Biotic Index scores and narrative values at study sites in the South Fork_Palouse watershed, 2010

List of Figures

Figure 1-1.	Eroding banks along the lower South Fork Palouse River (Site SFPR-098891) 1-2
Figure 1-2.	Signs of eutrophication along the lower South Fork Palouse River (Site SFPR-098891)1-3
Figure 2-1.	Map of the study area and proposed sampling sites in the South Fork Palouse River_watershed2-4
Figure 3-1.	Radiant water temperatures plotted versus river mile (from N. Fork Palouse) for the South Fork Palouse River
Figure 3-2.	Radiant water temperatures plotted versus river mile for Paradise Creek
Figure 3-3.	Estimated monthly fraction of POTW effluent in the South Fork Palouse River median flow year. Adapted from Pelletier (1993)
Figure 3-4.	Map indicating the status of sampling sites in the South Fork Palouse River watershed

1.0 INTRODUCTION

1.1 Project Setting

The Palouse region in Washington State occupies a large portion of the southeastern landscape. This region is characterized by asymmetric, steep and rolling hills with a deep tawny silt layer with underlying basalt and weathered basalt. Initial and extensive investigation of the unique topography and soil (Loess) origin of this region dates back to Russell (1897). Further investigation by Ringe (1968) compiled past research and proposed origins of the loess soil that comprises the "Palouse Hills" as well as a drainage basin analysis.

Drainage patterns (mainstem and tributaries of the Palouse River) are influenced by convergence of several characteristics:

- Topography
- Soils
- Underlying geology
- Climate patterns, and
- Groundwater-Surface water interaction.

The drainage pattern and hydrologic characteristics of stream surface flow are discussed in detail by Russell (1897) with several key points important for determining expectations for water quantity. The occurrence of perennial flow and intermittent flowing streams are explained by factors consistently associated with stream flow type. Those streams incised into bedrock channels are perennial streams whereas those incised into loess are associated with intermittent flow during portions of the year. Records indicate that surface flow had decreased in the Palouse River (at Hooper) by approximately 15 percent when comparing observations from 1898 and 1958 in February, during the same high flow months (USGS 1921; USGS 1962). Currently, high flows at this site have shifted consistently to March and were 35 percent lower during the water year 2010 more than 50 years later. Either climatic patterns have changed in the 52 year time period and/or water consumption had changed that accounts for some of the stream channel dewatering.

The landscape in the South Fork Palouse drainage was dominated by fescue/bunchgrass circa 1900 (Quigley and Arbelbide 1997) and has since been replaced by cropland, hay, and pasture with some forbs/annual grass mix (Daubenmire 1942, 1970, 1975). These changes from an uncultivated landscape to a setting that is now heavily cultivated has raised concerns about cumulative impact to sensitive surface water resources.

Development of the area by European settlers began after 1870 and consisted of a growing agricultural economy based primarily in fruit crops. The fruit crops were rapidly replaced over the next 20 years and dominated by wheat crops, yielding higher monetary returns than the first agricultural crops that were planted in the region. The native bunchgrasses were cleared rapidly and replaced by cultivated, non- native wheat crops that occupied at least half of

Whitman County by 1990. The native bunchgrass prairie existed as isolated tracts by 1990 in areas less favorable for farming throughout the Palouse region (Black et al. 2002). Less than 1% of all farming is currently irrigated as soil conditions and timing of precipitation promotes dryland farming (USGS 1975).

1.2 Regulatory Issues and Water Quality Studies

Recent Total Maximum Daily Load (TMDL) water quality studies addressed bacteriological impairments throughout the South Fork Palouse River drainage (Carroll and Snouwaert 2009). These impairments may originate from a variety of sources that indirectly and directly influence characteristics of the stream channel and riparian area. These influences include: livestock grazing, wildlife (especially ubiquitous populations), land use practice changes, and Wastewater Treatment Plants (e.g., Moscow, Pullman, and Albion). Although bacteriological contamination may not directly affect sensitive fish species, the occurrence of high concentration of this indicator reveals land use activities that alter stream channel characteristics and refugia important for survival of aquatic life (Mathieu and Carroll 2006).

Other water quality impairments identified in segments of the South Fork Palouse River are: ammonia (Pelletier 1993, 1995), dissolved oxygen and pH (Carroll and Mathieu 2006), and temperature (Bilhimer et al. 2006). The 1998 §303 (d) list for Idaho focuses on impacts related to flow alteration, habitat alteration, nutrients, sediment, and temperature. State of Idaho listings of reasons for water quality impairment are observed in the State of Washington portion of the drainage. Each of these water quality parameters that have exceeded water quality criteria in segments of this drainage directly affect life stages of sensitive fish species, particularly salmonids and char. EPA and the State of Washington considered water quality requirements for salmonids, char, other aquatic organisms, and the requirements for survival of various life stages in developing the current criteria for these parameters (Ecology 2006).

Earlier water quality studies informed on the type of pollutants and severity of contamination

at locations throughout the Palouse River watershed (Clark 2003; Henderson 2005). Among the water quality parameters previously mentioned as primary pollutants, sediments, phosphorus, and bacteriological contamination were the most prevalent. The longevity of human activity (beginning in the late 1800's) in the basin has altered landscape vegetation characteristics that have compounded pollution problems through de-stabilization of soil integrity, introduction of large quantities of nutrients into soils, that eventually erode to nearby stream channels (Figure 1-1). The effects on stream water quality are observed in several

Figure 1-1. Eroding banks along the lower South Fork Palouse River (Site SFPR-098891).

reports where eutrophication of aquatic ecosystems has affected dissolved oxygen concentrations and then pH conditions (Figure 1-2). There is some question, however, about the role riparian vegetation may have played historically and if the greater contribution to temperature mediation in streams of this basin during the warm months may have been migration of groundwater to streams and surface water exchange to groundwater in select reaches.

Figure 1-2. Signs of eutrophication along the lower South Fork Palouse River (Site SFPR-098891).

Groundwater influence on surface water streams can be significant during low flow portions of the year. The development of population centers like Pullman, WA has depleted groundwater levels and has permanently affected the presence of artesian wells that were well-known in the area. Groundwater recharge does not occur rapidly enough through surface water streams, lakes, or precipitation in order to replace as rapidly as withdrawal from select areas (USGS 1975). Nearly every town and farmstead uses springs or wells as a source for drinking water and limited irrigation.

1.3 Purpose for the Literature Review

A thorough literature review that examines historic information describing biological communities, changes to physical habitat, and available information describing water quality conditions for pre-European, 1975 to current, and current conditions was conducted. This review will provide information that will help determine the natural conditions of the system, and how the system has changed over time. The biological descriptions may provide the greatest evidence for historic conditions derived from autecological characteristics of biological communities and tolerance to environmental gradients.

1.4 Objectives of the Effort

The objectives of this project focus on generating answers to the following questions:

Question 1: What were the historic aquatic-life uses in the waterbody?

- What fish, amphibian, and invertebrate species were historically resident in the watershed?
- What other notable historic biological information is available pertaining to aquatic life in the waterbody?

Question 2: What are the current aquatic-life uses in the waterbody?

• What fish, amphibian, and invertebrate species currently reside in

the watershed?

- When are the fish, amphibian, and invertebrate species present?
- Do the fish have migration patterns and do they utilize thermal (or other) refugia in the watershed? Where are these refugia located and when are they utilized?
- **Question 3:** What are aquatic life uses that would most likely occur within a range of estimated natural conditions in the waterbody (Ecology will provide a description for the range of estimated natural conditions), both currently and historically?
 - What aquatic habitats could have occurred within the range of estimated natural conditions?
 - What is a reasonable estimation of the biota assemblage that could be found in this system if the water quality and habitat were improved to within the range of estimated natural conditions?
 - What are the effects of non-native riparian vegetation on the current aquatic community (i.e. reed canary grass compared to native riparian vegetation)?

A description of the environmental conditions during 3 important periods related to the above questions was developed by summarizing information gathered from existing knowledge and generating data describing current conditions. The time periods are:

- Pre-European conditions (Question 1; habitat and biotic conditions prior to arrival of original settlers).
- Current conditions (Question 2; field data from this study and more recent surveys),
- Trends from 1975-Current (Question 3; a reflection of environmental change over a 35 year period).

These 3 periods along a timeline, beginning with Pre-European settlement, were compared in order to determine (1) the extent of change in biotic communities that may have directly and indirectly been influenced by the arrival of Europeans, and (2) the effects of the development of the regional economy on aquatic resources.

2.0 METHODS

2.1 Literature Review and Professional Interviews

2.1.1 Strategy for initiating the review

The literature survey was completed using multiple approaches that could yield primary literature necessary to adequately address the objectives in this study. Three main sources for information were used to locate literature eventually used in constructing this document:

- Web-based survey (Google[©]),
- Library search (Eastern Washington University, Washington State University, and University of Idaho), and
- Professional Interviews (by telephone, in-person, or by email exchange).

The web based survey and library search methods were more consistent in approach and expected results. Search words and intensity of literature discovery were uniform between the two methods. The professional interviews differed among the respondents and this was due to the type of information each had to offer and the level of experience within the organization.

2.1.2 Literature Survey

Literature surveys were extracted from both the web-based search and from the library search. Literature was collected in electronic form, where available, and stored in sub-folders that reflected themes for environmental information:

- Benthic Macroinvertebrates (BMI)
- Dams
- Entomology
- Fisheries
- Land Use
- Literature from the Palouse Bibliography
- Periphyton
- Physical Habitat
- Remote Imagery
- TMDL Regulatory
- Use Attainability Analysis (UAA)
- Vegetation
- Water Quality
- Water Quantity
- Water Supply Bulletins
- Watersheds
- Wetlands

General categories that were related to any of these environmental themes were also used as key search terminology in locating available technical literature.

2.1.3 Database review

Information from existing databases like Ecology's EIM (Environmental Information Management) system was reviewed for relevant data. EIM is a clearinghouse of environmental data stored and annotated by Ecology and offers access via a web link:

http://www.ecy.wa.gov/eim/

Additional databases were reviewed for useful information through the Natural Resources Information Portal:

http://www.swim.wa.gov/

Information was reviewed for references to reports and/or literature relevant to objectives of this study. Reports generated by the Washington Department of Ecology related to the Palouse River drainage and surrounding region were located through on-line access to publications by the Water Quality Program and the Environmental Assessment Program. The Idaho Department of Health and Welfare-Division of Environmental Quality as well as the Nez Perce Tribe generated useful documents that described bases of information used to develop regulatory tools.

2.1.4 Personal communications

Several staff from academic institutions and tribes were contacted for information generated in the Palouse River drainage. Detailed information regarding these contacts is found in Appendix A: Professional Contacts List. Relatively little information was contributed from these conversations and through attempts to contact environmental professionals listed in the table.

Fishery Biologists from the Coeur d'Alene and Nez Perce Tribes stated that very little focus had been placed on resource management in the Palouse River drainage. The Nez Perce contact was able to locate a single document that reported on recent water quality conditions from several reaches in the State of Idaho. Results of this study identified primary pollution problems as: sediment, phosphorus, and bacteriological contamination (Clark 2003). The eroding soils both instream and from along banks carries high concentrations of adsorbed phosphorus from agricultural applications. The movement of the soils (with associated phosphorus) occurs with precipitation or rain-on-snow runoff and erosion of river banks during high flows. The phosphorus aggregates in increasing quantities as adhered to soils and influences trophic condition in nearby streams.

2.1.5 Compilation of the information and results

Organization of the summary of results section was organized into three time periods as described in the objectives of this literature survey. The time periods in which available and relevant literature was organized further partitioned these summaries as: physical habitat, water quality, and biological conditions. The time periods were intended to reflect typical periods during which significant changes occurred in land use, economic development, or availability of data from scientific investigations. The following were time periods in which these results were categorized:

- Pre-European
- Trends from 1975 to Current
- Current Conditions

Several types of environmental information were useful in examining how changes in one or more conditions during a time period might have influenced biological potential (and migratory patterns) throughout the South Fork Palouse River drainage. A summary of information from the literature survey was used in the Final Technical Report. Differences in physical, chemical, or biological conditions were identified by comparing data among the three time periods. Any differences were further examined for impact on biological communities and limitations to migration within the drainage (e.g., water quality factors or physical habitat availability). Scientific references were included in these summaries as well as additional references not cited, but evaluated for utility in this project.

2.1.6 Data presentation

Data summaries are presented as text, tabular, and graphical form in the Results section. Any tables or graphs that appear in this report are copied and included from the original source (cited) to preserve integrity of information content. Available data from historic studies as well as from summer 2010 field work are organized by the three time periods previously described and compared in order to identify what and where ecosystem changes have occurred in the drainage. These differences are categorized as physical habitat changes, water quality impairments, or biological impairments when current conditions differ from historical.

2.2 Current Instream Biological Characterization

The focus for most of the characterization of fish assemblages and other aquatic life, water quality, and habitat was in Washington State; with a small portion of the watershed located in Idaho. Figure 2-1 is an overall view of the drainage identifying major tributaries that confluence with the South Fork Palouse River.

Stream types were stratified by bottom substrate type (soft and hard substrate) as these features can be limiting to spawning success of several fish species known to occur in the South Fork Palouse River. EPA's General Randomized Tessellation Stratified (GRTS) design was used to select candidate sites in the Washington and Idaho portions of the watershed. A subset of 20 sites was used for field surveys of fish, benthic invertebrates, habitat, and water quality parameters relevant to the TMDL process. Because of the GRTS design, a target number of 30 sites is considered adequate to represent the various features of the river basin for an assessment (Olsen et al. 2009), but this assumption was altered in order to accommodate for sampling of multiple biological assemblages. In this study, 20 sites were used to represent fish population characteristics and 10 overlapping sites represented both fish and benthic invertebrate populations. The reduced number of sites from the minimum was still considered a valid random sample based on a reduced drainage network and likelihood that a measurable portion of stream channels are dry during the summer in the South Fork Palouse River

Figure 2-1. Map of the study area and proposed sampling sites in the South Fork Palouse River watershed.

drainage. The final survey design addressed factors that affect fish populations, and provided a basis for assessing the instream biota of the system.

Site selection focused on four streams and creeks of the South Fork Palouse River watershed: South Fork Palouse River, Paradise Creek, Missouri Flat Creek, and Dry Fork Creek. These tributaries and mainstem regions of the South Fork Palouse River watershed are known to remain wetted along the entire study area or, in the case of tributaries, at the lower portion of the creek prior to confluence with mainstem South Fork Palouse River. A representation of the primary sites and oversample sites (i.e., replacement sites for unsampleable primary sites) is reported in Figure 2-1.

To address the central issue of sustaining a viable fish assemblage and other aquatic life within the South Fork Palouse River and which also is attentive to WA Ecology's aquatic life use designation, the survey focused on the current status of the fish community, benthic macroinvertebrate community (at select locations), physical habitat condition, and conventional water quality conditions. Based on an analysis of historical data, trends in the viability of the fish assemblage can be ascertained from a direct comparison (past versus present assemblages), estimates of food availability and environmental conditions (as assessed from benthic macroinvertebrate collections) from historical and current data, and descriptions of existing refugia from physical habitat assessments.

Twenty (20) sample sites in the Washington and Idaho portions of the South Fork Palouse River watershed were chosen using EPA's GRTS method to evaluate water quality, habitat and fish and benthic macroinvertebrate communities relevant to the TMDL process. Field data collections followed Washington State Department of Ecology's guidance for site verification and layout, *in situ* water quality, substrate characterization, and fish community composition (Washington Department of Ecology 2009 [draft]). Benthic macroinvertebrate assessments followed Hayslip (2007) biological collection protocols that have been adopted by PNAMP (Pacific Northwest Ambient Monitoring Partnership). An additional evaluation of habitat quality was accomplished using EPA's Rapid Bioassessment Protocols (RBP) developed by Barbour et al. (1999).

Site Verification and Layout

Sample reaches are defined as 20 times mean bankfull width, using a minimum reach length of 150 meters and a maximum of 2000 meters. Thus, sites with a mean bankfull width of less than 8 meters are extended to 150 meters and those greater than 100 meters are limited to 2000 meters.

Water Quality

Water quality parameters, including temperature, dissolved oxygen, pH and conductivity were measured using a YSI or Hydrolab multimeter probe. Data were collected twice, at the start and end of sampling at the site, in the vicinity of the mid-point of the sampling reach.

Substrate Characterization

Substrate was characterized at each of 10 equidistant transects along the length of the sampling reach. Particle size class, based on the intermediate axis length, was recorded at 11 equally-spaced stations along each transect. Other morphological features, including wetted width, bankfull width, wet depth, bankfull depth, and substrate embeddedness were also evaluated.

Fish Community Composition

Fish community sampling was conducted using a single-pass electrofishing estimate. All habitats were sampled over the stream reach. Specimens were enumerated and identified to species, categorized by life stage (juvenile or adult), and measured to determine the minimum/maximum length (total length - mm) by species. Most fish were returned back to the stream following processing; however, some individuals (≤ 3 individuals per species) were retained to verify taxonomic identification or to be used as reference specimens.

Benthic Macroinvertebrates

Benthic macroinvertebrate communities were characterized using existing information beginning with collections from the past 20 years. More recent community composition was characterized with benthic macroinvertebrate collections at 10 randomly selected sites (collected simultaneously at 10 of the 20 fish population sites) and compared against data that had been collected from the early 1990s in order to determine trends in condition of this community.

Physical Habitat

The RBP habitat evaluation is visually-based and consists of scoring a continuum of conditions for each parameter into one of four categories represented as optimal, suboptimal, marginal, and poor. Included is a 20-point scale for each parameter with 0 being the poorest and 20 the optimal. Habitat quality was scored by visually assessing (i.e., scoring) parameters along stream reach. The total possible score for physical habitat is 200. Riparian conditions were assessed using both a rapid, visual scoring survey as well as a quantitative estimate of canopy cover following methods detailed in Washington Department of Ecology (2009 [Draft]). Canopy cover contributes food energy to the benthic macroinvertebrate community and provides temperature regulation on a localized scale during the warmer months in the southeast region of Washington State. The type and presence of canopy cover, in part, has a strong influence on benthic communities. Well-developed riparian areas, with extensive canopy cover serve to regulate temperature, promoting more diverse assemblages comprised of species intolerant to high or fluctuating water temperatures.

3.0 RESULTS

The following sections present ecological characterizations of the South Fork Palouse River watershed over three time periods: pre-European, 1975 to current, and current conditions. Points of contact for historical information (pre-European through current) and the resulting technical memorandum of the literature review are presented in appendices A and B of this report. Biological data collected as part of the current study are also provided as appendices C and D.

3.1 Pre-European

3.1.1 Physical habitat and Landscape Characteristics

Historically, fall chinook (*Oncorhynchus tshawytscha*) spawning in the Washington portion of the Snake River was concentrated near the mouths of the Palouse and Clearwater Rivers (Fulton 1968, cited in Dauble 2000). This portion of the Palouse River flows through a deep canyon cut through the Columbia River Basalts during the torrential Spokane Floods. Prior to these floods, the Palouse River flowed down the now abandoned Washtucna Coulee, joined Esquatzel Coulee at Connell, and then joined the Columbia River near Pasco. The floods spilled over the south wall of the historic Palouse River valley and headed for the Snake River where the waters poured over the lip of the Snake River Canyon. This was likely the original location of Palouse Falls. Successive flood flows produced immense whirlpools that tore large blocks of basalt from the face of the falls, causing the falls to erode upstream about six miles to its current location. The Palouse Falls at approximately 185 feet is a complete barrier to anadromous and non-anadromous fish passage. Anadromous fish and bull trout are not present in the headwaters of the Palouse River within Washington (Kuttel 2002).

In the nineteenth century, perennial caespitose grasses, often associated with forbs and low shrubs, dominated uplands, but parts of the landscape where surface water accumulated in winter and spring developed distinctive vegetation. Dense stands of common camas (*Camassia quamash*), an important food plant for the region's native people, were the most obvious feature of this association (Weddell date unknown).

Weddell (date unknown) states that it is interesting to note that reed canarygrass (*Phalaris arundinacea*), which now forms virtually monolithic stands in stream channels and floodplains throughout the Palouse Prairie, was not collected in the study area prior to 1917 and is not listed by Piper and Beattie as occurring in the Palouse Region prior to 1901. This plant occurred in some parts of the West prior to white settlement, but the highly invasive form that now dominates streams and streamside environments in the Intermountain West may be descended from a non-native cultivar or a hybrid between a cultivar and a native form (Merigliano and Lesica 1998). The earliest Latah or Whitman County specimen in the Stillinger or Ownbey herbaria was collected by R. Daubenmire in 1938 in a "muddy roadside ditch" 5 miles north of Moscow (WSU Ownbey Herbarium Spec. No. 261001).

3.1.2 Water quality

There are no known records that measured water quality conditions in the South Fork Palouse River drainage during the pre-European time period. The markers that inform on surface water conditions are the precipitation records for the Palouse Region and the dryland crop cultivation favorable in this area. The precipitation period during the year is held as moisture in the loess soil and stored for a prolonged period into the early summer. The augmentation of surface flow during the warming season may have been delivery of surface soil moisture to the stream channel. The pre-European water temperature conditions may have been slightly cooler further into the summer season, but not by an appreciable amount.

3.1.3 Biological Conditions

The Palouse Falls, at approximately 185 feet, is a complete barrier to anadromous and nonanadromous fish passage. Anadromous fish and bull trout are not present in the headwaters of the Palouse River within Washington (Kuttel 2002).

According to fishery documents, the Palouse River was, at least historically not used by spawning salmon (Fulton 1968). Parkhurst (1950) did not survey the Palouse River during his fisheries study and historic overview of Snake River Basin anadromous fishes. He noted that a high falls (Palouse Falls) located about 10 km above the mouth "renders the stream inaccessible to migratory fish". Ethnographic records show that salmon fishing was extremely productive at the confluence of the Palouse and Snake Rivers (Ray 1975; Butler 2004). Lewis and Clark and later explorers describe a very large village at the mouth of the Palouse River. Ross Cox, who spent time in the village around 1812, noted that in early August, people there were engaged in catching and drying salmon in large numbers (Ray 1975). Historic documents also show fishing camps and villages along the Palouse River itself (Ray 1975). Ray refers to two such locales in particular: *A'patap*, which was located at the foot of the Palouse Falls, and *Claxo'pa*, about four miles above the mouth. Unfortunately, the documents do not indicate whether the Native American fishery along the Palouse River targeted resident freshwater fish or anadromous salmon and trout (Butler 2004).

The falls have been a barrier to migratory salmonids at least since the late Pleistocene and Holocene periods, thus it is clear that the Palouse River itself was not a passageway for fish migrating to headwater areas to spawn. It is possible of course that the Palouse River channel below the falls was used by salmon for spawning and thus a fishery might have developed to target such fishes. Pre-dam records for fish distribution lead to the conclusion that the Palouse River never supported large salmonid populations (Butler 2004).

The historic fish assemblage in the Palouse River Subbasin prior to European settlement consisted primarily of anadromous and resident salmonids, cyprinids, and catastomids in the lower Palouse River below Palouse Falls, and a diverse assemblage of fish species, primarily composed of cyprinids and catastomids above the falls (Cook 2001). The anadromous salmonid fish species noted included Chinook salmon (*Oncorhynchus tshawytscha*) and steelhead (*O*.

mykiss) (Parkhurst 1950). Although there is a general understanding of what species now exist in the sub-basin, there is a lack of knowledge on what native fish species existed within the subbasin, prior to European immigrant settlement in the area, which are no longer present (Cook 2001).

Wertz (1993) quotes a longtime resident as stating that Paradise Creek supported a cutthroat trout population up until the 1890's (Doke and Hashmi 1994).

3.2 1975 to Current

3.2.1 Physical habitat and Landscape Characteristics

The Palouse River originates in the mountains of western Idaho and flows 262 km, through forest, dryland farming (non-irrigated), and barren rangelands before discharging to the Snake River; it drains 8500 km². Dryland farming, mainly wheat, constitutes 75% of land use in the Palouse River Basin, with grazing and urban development in localized areas.

A notable physical feature in the drainage is Palouse Falls, a vertical rise of approximately 185 feet, and is a complete barrier to anadromous and non-anadromous fish passage. Anadromous fish and bull trout are not present in the headwaters of the Palouse River within Washington (Kuttel 2002) and there is no record of use by salmon and/or trout in the lower 10 km (6 miles) of the river (downstream of the falls) (Fulton 1970).

The Palouse River and its tributaries flow freely to the Snake River with no major man-made impoundments (USDA 1978). There are a few minor impoundments for irrigation purposes, mostly located on small tributaries. There have been major efforts historically to straighten and keep stream channels clear of vegetation to assist with drainage of the surrounding landscape and to control flooding on tributaries of the Palouse River. In some cases dikes have been installed along streams to reduce flooding, these have disconnected the streams from the riparian and upland zones. Tiling has been used to improve the drainage of wetter areas to open the ground for agricultural purposes; the tiling normally directed to the closest stream. Farm practices and the removal of wetlands have dramatically reduced the upland water storage capacity of the Palouse Basin (Servheen et al. 2002). Forest grounds in Idaho have been historically clear-cut reducing water storage potential. Also, an increase in the amount of impervious surfaces from expansion of urban areas has had a noticeable effect on aquatic resources. The Palouse River, as it flows through Colfax, Washington, is contained in a concrete aqueduct. These factors have contributed to a 'spiky' hydrologic curve, and several tributary streams becoming intermittent in the summer months. Occurrence of precipitation events results in rapid movement of water through the small feeder streams that drain to the mainstem Snake River (Cook 2001).

The gradient reflected by land use changes from headwater to mouth establishes a unique opportunity for examining biological response in aquatic ecosystems as related to a longitudinal nutrient gradient. In addition, nutrient input is also influenced by source water and location of

discharge into the South Fork Palouse River (e.g., Paradise Creek). The periphyton community, for example, has been a good indicator in aquatic settings for differentiating nutrient sources in stream flow from sewage treatment effluent and excessively high nutrient loading from Moscow, Idaho, and Pullman, Washington (Greene et al. 1994; Munn et al. 2002).

The South Fork and its main tributaries in Idaho (Crumarine Creek, Gnat Creek and Howard Creek) originate from springs within the forested terrain of Moscow Mountain. The South Fork Palouse River experiences low flows during the late summer and early fall months and high flows in the spring and early summer months. Drained wetlands and flood plains in the Palouse have resulted in changes to channel sinuosity and diversity. Wetland and floodplain areas typically serves as recharge sources for surface water in streams during low flow months of the year so the absence of these recharge zones results in more severe drought conditions in select reaches. Without these water storage areas, peak flows are higher and for a shorter period of time, creating in-stream channel erosion, flooding, and deeply incised channels (IDEQ 2007).

Erosion is occurring along most stream banks of the Idaho portion of the South Fork Palouse River that are adjacent to cropland and pastureland fields. Livestock activity often promotes stream bank deterioration, as well as the removal of vegetation and the disturbance of woody vegetation and rhizomatous herbaceous species in the riparian zone is evidence of this effect in select reaches. Declining root mass density promotes bank soil instability and sloughing resulting in contribution of significant amounts of sediment into the SFPR drainage. Currently, several reaches of the stream have been channelized or lack woody vegetation where cropland fields were established. Herbicide spray and tillage operations, as well as grazing activities, are intentional, preventive measures for re-establishment of woody plant species in the riparian zone. Many small intermittent streams have been converted to drainage ditches, and the riparian vegetation removed during alteration. Tillage often occurs up to the edge of the ditch or property, leaving limited or no buffer between the waterway and the cropland. Elevated water temperatures in the summer and increased nutrient and sediment loads can adversely affect aquatic habitat (HDR 2007). While there are some remnant areas; much of the historically diverse and multi-layered, complex vegetation structure in stream reaches is missing (ISCC 2009).

The alteration of the landscape in the South Fork Palouse River drainage is reflected as changes in flow patterns and water quality conditions. Changes in flow patterns include increased peak flows in winter and spring storm events, and lower sustained summer base flows. The increase in peak flows is partly caused by loss of storage within the riparian zone, leading to a reduction in infiltration, which in turn, lowers the sustained summer base flows. The flow pattern changes have materialized as significant flood events that have been documented in the City of Pullman. The most recent severe flood occurred in 1996, triggered by heavy rainfall on snow that covered frozen ground. Lower summer base flows also contribute to warmer water temperatures. During low flow summer periods, there is no sustained summer base flow in the South Fork. Downstream from Pullman, the instream summer flow in the South Fork is mainly composed of City of Moscow and City of Pullman wastewater discharges (HDR 2007). Table 3-1 below was taken from IDHW-DEQ 1994 and summarizes habitat scores for various stations on Paradise Creek (all stations in Table 3-1 are located in the State of Idaho). Schwarz Creek is a reference site used by Rabe (1993) for comparison with those on the mainstem of Paradise Creek. The qualitative habitat quality for a stream segment is rated as excellent (101-125), good (67-100), fair (33-66), or poor (0-32). Schwartz Creek was the reference stream in the study, (Rabe et al. 1993).

			W	hite				B	lw.		
	Mt.	View	&	&Troy		6 th & Deakin		WWTP		Schwartz	
Parameter	Oct	Feb	Oct	Feb	Oct	Feb	Oct ¹	Oct	Feb	Oct `91	Feb `92
Bottom substrate	3	2	3	3	6	4	2	10	3	15	16
Embeddedness	2	2	2	2	7	4	2	12	6	11	14
Channel shape	2	2	5	5	2	2	2	12	12	13	13
Riffle/bend ratio	1	1	1	1	2	2	2	4	4	11	11
Channel alteration	2	2	2	2	2	2	1	5	5	15	15
Lower bank stability	3	3	5	5	5	5	4	6	6	8	8
Bank vegetation	4	4	6	6	6	6	6	8	8	10	10
protection											
Canopy cover	2	0	7	5	7	5	7	6	4	8	6
Width of riparian	3	0	4	2	4	2	4	8	3	8	8
TOTAL SCORE	22	16	35	31	41	32	30	69	49	99	101

Table 3-1.	Habitat as	sessment sco	ores of Paradi	se Creek,	October	1992 and	February	/ 1993.
------------	------------	--------------	----------------	-----------	---------	----------	----------	---------

¹ October 1993

3.2.2 Water quality

The South Fork Palouse River and several of its tributaries (Paradise Creek, Missouri Flat Creek and Dry Fork Creek) are listed as impaired by fecal coliform bacteria on the Clean Water Act's 303(d) list of impaired water bodies (Carroll et al. 2009). The streams in this watershed are required to have a geometric mean of less than 100 colony forming units/100 milliliters (cfu/mL) and not more than 10% of the samples used to calculate the geometric mean can exceed 200 cfu/100mL.

The South Fork Palouse River is listed on the 303(d) list of impaired waterbodies for high instream temperatures (Table 3-2) (Bilhimer et al. 2006). As a consequence, Thermal Infra Red (TIR) true color imagery was collected in late July 2005 to characterize general patterns in surface water temperature throughout the South Fork Palouse River drainage (Figure 3-1).

Radiant water temperatures in the South Fork Palouse River ranged from 17.7°C just downstream of the Paradise Creek confluence to a survey maximum of 26.4°C at river mile 3.3 upstream of the town of Colfax). The TIR survey began at the river mouth and continued upstream to near the headwaters (mile 43.4). However, upstream of river mile 33.2, the South Fork did not have enough visible surface water to obtain accurate temperature samples (Watershed Sciences, Inc. 2006).

			fuly (°C)			Α	ugust (°C)	
Station ID	Avg. DMax	Stdev	Max 7DADMax	Date of 7DADMax	Avg. DMax	Stde v	Max 7DADMa x	Date of 7DADMa x
34C100 (Paradise Cr)	21.31	0.74	21.67	7/30/2005	20.64	0.95	21.33	8/1/2005
34B110 (SFPR at	20.03	0.67	20.39	7/15/2005	17.83	1.64	20.1	8/1/2005
Pullman)								
34B130 (SFPR blw	21.57	1.13	22.51	7/4/2005	17.62	1.59	20.57	8/1/2005
Sunshine)								

 Table 3-2.
 2005 monthly summary for ambient monitoring stations.

Figure 3-1. Radiant water temperatures plotted versus river mile (from N. Fork Palouse) for the South Fork Palouse River.

Radiant water temperatures in Paradise Creek ranged from 17.4°C to 22.3°C (Figure 3-2). The longitudinal profile shows considerable variability between radiant temperature samples. The wetted channel width was relatively small (1 to 5 meters) throughout the entire extent with some reaches having no visible surface water. Radiant temperatures were sampled where surface water was clearly visible and wetted widths were at least 1.5 meters.

Figure 3-2. Radiant water temperatures plotted versus river mile for Paradise Creek.

The South Fork Palouse River has been listed by the state of Washington under Section 303(d) of the Clean Water Act for non-attainment of Washington State dissolved oxygen (DO) and pH criteria. The listings are based on sampling done by the Washington State Department of Ecology in 1987, 1991, and 1994-2001. An additional 303(d) listing within the South Fork Palouse River watershed for ammonia can be found in Carroll et al.(2006). Pelletier (1993) showed that the fraction of POTW effluent in the SFPR during critical flow is high. Moscow POTW and Pullman POTW are estimated to comprise the majority of the river flow during July–November for a typical year (Figure 3-3).

In 1980, Idaho's Department of Health and Welfare, Division of Environmental Quality (DEQ) listed Paradise Creek as protected for agricultural water supply and secondary contact recreation designated beneficial uses in the Idaho Water Quality Standards. In October 1993, DEQ staff conducted a Use Attainability Assessment (UAA) for Paradise Creek. The purpose of the UAA was to evaluate the appropriateness of the current designated uses and to determine whether the creek should be protected for any additional uses. It was determined through the UAA that if the water and habitat quality is improved, Paradise Creek would be capable of supporting salmonid spawning and cold water biota. This designation applies to the portion of the creek flowing through Idaho; however above Mountain View Park the creek is intermittent and these uses would apply only when water is present. Secondary contact recreation and agricultural water supply were confirmed as appropriate designated beneficial uses (IDHW-DEQ 1994).

Figure 3-3. Estimated monthly fraction of POTW effluent in the South Fork Palouse River median flow year. Adapted from Pelletier (1993).

In 1979, DEQ identified the South Fork of the Palouse River and Paradise Creek as having severe pollution problems due to erosion on dryland farming ground (IDHW-DEQ 1981). A water quality survey was conducted and determined the concentration of sediment and associated pollutants depends on the timing and magnitude of runoff. During high flows the concentration of suspended sediment ranged 1,000-3,000 mg/l, fecal coliform numbers increased downstream and exceeded Idaho water quality standards for secondary contact recreation. Paradise Creek had an overall water quality rating of 99 on a scale of 0-100, with zero being pristine waters and 100 being highly degraded. The survey also concluded that with respect to water quality, most of the surveyed agricultural areas within the Palouse drainage would be considered critical. Due to the severe impacts that agriculture has on Paradise Creek, the Latah Soil and Water Conservation District conducted a planning project to implement best management practices (BMPs) in the Paradise Creek watershed through the Idaho Agricultural Water Quality Program. The District submitted a grant application for implementation in 1981 and 1986, it was rejected both years. (Latah SWCD 1981, 1986) (IDHW-DEQ 1994).

Idaho DEQ designated Mountain View Park as the point where Paradise Creek becomes a perennial stream. Historically, this area was a wetland and water is almost always present during the low flow periods. Upstream from this point the creek is intermittent except during spring runoff. Paradise Creek is located along the western edge of Mountain View Park. In this section the creek is channelized, has little canopy cover, and the bottom substrate is highly embedded. For these reasons this site is generally considered as a poor habitat for fish. The water quality is capable of supporting cold water biota; water temperatures are below 20°C and only once was the dissolved oxygen level measured to be below the minimum requirement (6

mg/L) for cold water biota as defined in the Idaho Water Quality Standards (IDHW-DEQ 1994). Table 3-3 below also from IDHW-DEQ (1994).

Parameter	Winter Values Nov. – April (n=8)	Summer Values May –Oct. (n=6)
Temperature (°C)	0 – 5.5	6.9 - 16.0
pH	6.8 - 7.7	6.9 – 7.6
Dissolved Oxygen (mg/L)	7.0 - 13.2	3.9 - 11.8
Conductivity	127 – 218	37 – 385
Alkalinity (mg/L as CaCO ₃)	27 – 187	40 - 203
Suspended Solids (mg/L)	0.8 - 286.7	4.5 - 112.7
Total Nitrogen (mg/L)	2.27 - 13.87	1.37 – 3.24
NH_3 (mg/L)	0.02 - 0.09	< 0.01 - 0.04
NO_3 (mg/L)	0.75 - 12.45	1.21 - 2.71
NO_2 (mg/L)	< 0.01 - 0.05	0.03 - 0.04
Total Phosphorus (µg/L)	75 – 388	61 – 350
Fecal Coliforms (CFU/100 ml)	<4 - 152	4 - 433
Fecal Strep (CFU/100 ml)	10 - >6000	42 - 1400
Flow (CFS)	0.05 - 27.49	0.03 - 28.76

Table 3-3.	Mountain View Park water quality data (Source: Washington Water Research
	Center)

Tables 3-4 and 3-5 below are also from IDHW-DEQ (1994) and summarize water quality information from other stations on Paradise Creek.

Table 3-4.	White Avenue and	Troy Highway wate	r quality data	(Source:	Washington \	Nater
	Research Center).					

	Winter Values	Summer Values
Parameter	Nov. – April (n=8)	May –Oct. (n=6)
Temperature (°C)	0 - 5.2	6.9 – 18.0
pH	6.8 - 7.6	7.2 - 8.6
Dissolved Oxygen (mg/L)	3.2 - 12.8	2.6 - 13.0
Conductivity	166 – 772	153 – 459
Alkalinity (mg/L as CaCO ₃)	32 - 189	50 - 169
Suspended Solids (mg/L)	4.0 - 28.6	2.5 - 56.7
Total Nitrogen (mg/L)	0.76 - 13.25	0.64 - 3.24
NH_3 (mg/L)	< 0.01 - 0.11	0.02 - 0.06
$NO_3 (mg/L)$	2.73 - 11.46	0.23 - 2.47
$NO_2 (mg/L)$	< 0.01 - 0.04	0.01 - 0.04
Total Phosphorus (µg/L)	18 - 312	100 – 396
Fecal Coliforms (CFU/100 ml)	6 - >967	8 - 600
Fecal Strep (CFU/100 ml)	20-310	80 - >780
Flow (CFS)	0.06 - 24.96	0.03 - 26.48

Parameter	Winter Values Nov. – April (n=9)	Summer Values May –Oct. (n=6)
Temperature (°C)	0 – 7.6	6.9 – 13.5
pH	6.8 - 7.7	6.9 - 7.8
Dissolved Oxygen (mg/L)	5.7 - 12.8	5.6 - 11.6
Conductivity	165 – 536	171 – 751
Alkalinity (mg/L as CaCO ₃)	37 - 201	52 - 225
Suspended Solids (mg/L)	6.0 - 265	3.6 - 203.2
Total Nitrogen (mg/L)	2.12 - 12.21	1.7 – 13.02
NH ₃ (mg/L)	0.08 - 2.04	0.08 - 4.84
NO ₃ (mg/L)	1.41 - 11.46	0.72 - 4.94
NO_2 (mg/L)	< 0.01 - 0.34	0.03 - 0.31
Total Phosphorus (µg/L)	39 – 775	225 - 1060
Fecal Coliforms (CFU/100 ml)	12 - 290	144 - >2000
Fecal Strep (CFU/100 ml)	61 - 420	128 - 2500
Flow (CFS)	0.11 - 24.33	0.07 - 20.09

Table 3-5.	Sixth Street and Deakin water quality data (Source: Washington Water Research
	Center).

Under normal conditions, the Moscow WWTP discharges approximately two million gallons of effluent a day into Paradise Creek. During low flow periods, the flow in the creek increases at least ten fold as a result of this discharge. This water is generally warmer than the creek with an average yearly temperature of 14.3°C (SWWRC 1994). Paradise Creek below the WWTP has higher concentrations of suspended solids, ammonia, nitrate, and total phosphorus due to the discharge (SWWRC 1994; IDHW-DEQ 1994)(Table 3-6).

Table 3-6. ID/WA Bo	order water quality data	(Source: Washington	Water Research Center).
---------------------	--------------------------	---------------------	-------------------------

Parameter	Winter Values Nov. – April (n=9)	Summer Values May –Oct. (n=6)
Temperature (°C)	4.7 - 14.8	9.5 – 17.3
pH	6.6 - 7.7	7.1 - 7.6
Dissolved Oxygen (mg/L)	0.9 - 12.0	1.9 - 10.3
Conductivity	255 - 993	277 - 750
Alkalinity (mg/L as CaCO ₃)	60 - 176	93 - 183
Suspended Solids (mg/L)	7.8 - 736	4.0 - 35.1
Total Nitrogen (mg/L)	7.56 - 29.49	13.6 - 21.9
$NH_3 (mg/L)$	1.00 - 7.60	1.33 - 3.10
$NO_3 (mg/L)$	4.23 - 12.20	3.10 - 10.95
$NO_2 (mg/L)$	< 0.01 - 1.00	0.10 - 0.80
Total Phosphorus (µg/L)	780 - 7250	1060 - 4200
Fecal Coliforms (CFU/100 ml)	11 - >630	84 - 310
Fecal Strep (CFU/100 ml)	7 - 2000	28 - 866
Flow (CFS)	4.7 - 41.61	3.02 - 22.18

In summer 2006, the Washington State Department of Ecology initiated several TMDL-based field studies to assess current stream temperatures and water quality conditions along the Palouse River, South Fork Palouse River, and Paradise Creek. The study, Surface-water/Groundwater Interactions and Near-stream Groundwater Quality along the Palouse

River, South Fork Palouse River, and Paradise Creek, was part of that effort, and was undertaken to characterize the thermal and water quality influences that groundwater imparts to these rivers along gaining reaches. Results from that study showed that measurable concentrations of dissolved orthophosphate (0.018 to 0.171 mg/L) and dissolved total phosphorus (0.073 to 0.875 mg/L) were found at all sampled piezometer sites. Measurable concentrations of dissolved nitrate+nitrite-N and ammonia were found at roughly half of the sampled piezometers at concentrations ranging from 0.013 to 10.1 mg/L and 0.03 to 0.549 mg/, respectively. The average estimated unit-area-mass loading to the river from discharging groundwater varied by parameter and location. The loading ranged from 0.03 to 107 mg/d/m² of streambed for dissolved total phosphorus, and 0.01 to 3,119 mg/d/m² for dissolved nitrate+nitrite-N. These load values are considered upper bound estimates since they do not account for biological or chemical reactions that may potentially reduce nutrient concentrations in discharging groundwater as it passes through the final few feet of the streambed (Ecology 2009).

The water temperature of the Palouse River at Hooper during October 1967-September 1971 ranged from a low of 0°C (32°F) in December to a high of 30°C (86°F) in July. The quantity of suspended sediment transported by streams in the basin, owning to the rapid erosion of the loess soils covering much of the basin, is greater than that of most other basins in the State. The average annual sediment yield during July 1961-June 1965 ranged from 5 tons/mi² from Cow Creek at Hooper to 2,100 tons/mi² from Rebel Flat Creek at Winona, and the average annual suspended-sediment discharge of the Palouse River at its mouth during the same period was 1.50 million tons (Nassar and Walters 1975).

The Palouse River and its tributaries are currently listed on the states (Washington and Idaho) 303(d) list for metals, pesticides, fecal coliform, dissolved oxygen, pH, ammonia-N, sediment, nutrients, temperature, and flow. The most common pollutants affecting the Palouse River and its tributaries are temperature, dissolved oxygen, pH, and fecal coliform. The South Fork of the Palouse River has been rated as having the worst water quality in Washington based on WDOE's water quality ambient monitoring data collected in Pullman (Cook 2001). In Idaho, the Palouse River tributaries of Deep Creek, Flannigan Creek, West Fork Rock Creek, Gold Creek, Hatter Creek, Big Creek, and the South Fork Palouse River are listed as water quality limited for bacteria, flow alteration, habitat alterations, nutrients, sediment and temperature. Cow Creek (Idaho) is listed for habitat alterations, nutrients and temperature. Paradise Creek is the only Idaho stream in the drainage where a Total Maximum Daily Load (TMDL) Implementation Plan has been developed (Cook 2001). A TMDL Implementation Plan for Agriculture is currently under development for the South Fork Palouse River in Idaho to address listings for sediment, nutrients, temperature, and bacterial contamination (IDHW-DEQ 2009).

Based on total annual load estimates, the Moscow WWTP was the largest source of phosphorus and nitrogen to Paradise Creek. The Moscow WWTP was also the major source of ammonia observed at the Busch site (IDHW-DEQ 1994) in WA (located at the border between Idaho and Washington) and, therefore, contributes to WA state ammonia and dissolved oxygen standards not being met at this site. Ag fields were a major source of suspended solids to Paradise Creek during peak flows in late winter and early spring when precipitation, runoff and erosion were greatest. Additional non-point sources of pollution include livestock and animal research facilities (Idaho), forestry, mining, construction, recreation, failing septic systems and toxic sites (Idaho). Dissolved oxygen concentrations were generally lowest in the summer and fall of 1993. Poor water quality is not the only problem facing Paradise Creek. The stream bank and habitat surrounding Paradise Creek have also experienced major damage. The removal of riparian vegetation, alternation of the stream channel and construction along the stream bank have resulted in unstable stream bank conditions which increase erosion and damage the habitat of aquatic organisms including macroinvertebrates and fish. Removal of riparian vegetation is also greatly responsible for the elevated water temperatures observed in Paradise Creek and the SFPR in the summer (Doke and Hashmi 1994).

3.2.3 Biological conditions

An earlier study establishing a link between water quality conditions and biological response can be found in a preliminary survey of fish parasites in the Palouse Area (Griffith 1953). The majority of creeks and streams used as collection localities drain into the Palouse River, which then empties into the Snake River. The small streams sampled, including the Palouse River, resemble those in the South Fork Palouse River drainage and all had high turbidity levels. The low water clarity was considered to have an impact on number of fish species that would be present (Griffith 1953).

The lowest portion of the Palouse River drainage is host to summer steelhead, bull trout, fall chinook, and smallmouth bass are all known to be present in the lower six miles (Mendel et al. 2003; Mendel et al. 2004). Fall Chinook use this reach of the Palouse River for spawning and rearing as well. However, Palouse Falls presents a 185 foot vertical barrier to anadromous and non-anadromous fish passage. Anadromous fish and bull trout are not present in the headwaters of the Palouse River within Washington (Kuttel 2002).

Brook stickleback is established in the upper 36 km of Rock Creek, Spokane, Washington. Rock Creek is a tributary of the Palouse River which drains into the Snake River. Collection prior to 1999 yielded no brook stickleback in this drainage, leading researchers to believe that the species was recently introduced. Rock Creek resembles portions of the South Fork Palouse River drainage in habitat availability and water quality characteristics. For this reason identification of this fish species as a recent arrival in the drainage indicates the frequency of occurrence of nonnative species. This is the fifth record of occurrence for the brook stickleback west of the continental divide in the United States since 1995 and the first occurrence in Washington. Brook Stickleback was previously collected in the Swan/Flathead River Drainage, Montana, Green River Drainage, Utah, the Elk River Drainage in Colorado, and the Klamath River Drainage, California (Scholz et al. 2003).

A comparison of fish species found above and below Palouse falls from 1968 through 1975 described no significant or identifiable differences. Species composition below Palouse Falls was composed of eight native species and three exotics (as mentioned in the two previous

paragraphs). Upstream of Palouse Falls fish collections contained eleven native species and nine exotics. These fish species are potentially able to colonize and survive in the South Fork Palouse River further upstream based on the connectivity within the drainage. The major differences in species composition above and below Palouse Falls appeared to be the absence of Paiute sculpin (*Cottus beldingii*). Paiute sculpin is the most abundant cottid in the lower Clearwater River and tributaries near the mouth of the Clearwater and presumably also the lower Snake River. The exclusion of *C. beldingii* and *C. bairdi* (mottled sculpin) of the *hubbsi* form from above the falls would seem to indicate that the Palouse River and its tributaries were subjected to multiple invasions of cottid species and forms from centers of endemism (Maughan et al. 1980). Three species, northern pikeminnow (*Ptychocheilus oregonensis*), western dace or speckled dace (*Rhinichthys osculus*), and Palouse finescale sucker (*Catostomus catostomus*) were collected from South Fork Palouse River stations in two studies (Griffith 1953; Maughan et al. 1980). Griffith (1953) reported the additional species: speckled dace and Palouse finescale sucker and confirmed the presence of northern pikeminnow.

Peripheral studies of fisheries condition informed on identity of fish species present in various reaches throughout the Palouse River drainage. For example, Griffith (1953) surveyed the parasites of fishes found in the Palouse Area of southeastern Washington from the fall of 1948 through the spring of 1950. Fish were collected from lakes, ponds, and streams in 15 different localities. A total of 181 specimens representing seven families and 17 species were examined. Table 3-7 indicates locations surveyed number of fish species collected, and rates of infection. A total of 21 Palouse fine-scale suckers were examined and 18 were infected. Palouse fine-scale sucker were taken from two areas: the South Fork of the Palouse River and Missouri Flat Creek. Columbia large-scale sucker, 27 examined, 26 infected, was also collected from the South Fork Palouse River and the North Fork Palouse River. Western Dace-9 examined, 5 infected. These minnows were the most abundant fish in the small creeks and streams of the Palouse area. Dace were collected from Robinson Lake, South Fork of the Palouse River, North Fork of the Palouse River, and Paradise Creek. One largemouth bass fingerling from the North Fork of the Palouse River had six copepods attached externally (Griffith 1953). These observations lend some insight into the type of stream or waterbody setting where each of the named species were resident. Although the incidence of parasites on fish species can be useful for determining residence time and habitat in which they are acquired by individual fish, the identification of fish species and autecological characteristics was useful for understanding constraints for survival or migratory behavior.

Several warmwater species of fish have been identified for endemism to the South Fork Palouse River drainage. The first documented occurrence of a salmonid native to the Palouse was an isolated population of Yellowstone cutthroat trout, as Palouse Falls was an effective barrier to redband trout migration. Behnke (2002) contends the evolutionary history of the Yellowstone cutthroat trout is associated with the Snake River drainage. Following appearance of Shoshone Falls, ID more than 60,000 years ago, the Yellowstone cutthroat was likely replaced below this point by invading rainbow trout throughout this lower end of the Snake River drainage and tributaries. More recently, Behnke (2002) described the possible introduction of Westslope cutthroat trout in isolated populations resulting from repeated failures of the ice dam from Lake Missoula more than 12,000 years ago. Currently no native salmonid species and no anadromous fish exist in the drainage. Idaho State Water Quality Standards do not distinguish between native and non-native salmonids for the designation and protection of the salmonid spawning beneficial use (IDEQ 2007).

Localities	Number of Fish Species	Number of Specimens Examined	Number of Infected	Per Cent Infected	Number with Cestodes	Number with Trematodes	Number with Nematodes	Number with Acanthocephala
Asotin Creek	1	2	2	100.0			2	
Davis Lake	7	32	18	56.3	2	1	7	16
Missouri Flat Creek	1	19	17	89.5	1	5		12
Palouse River, North Fork	2	2	1	50.0				
Palouse River, South Fork	3	9	6	66.7				2
Paradise Creek	1	3	3	100.0				
Robinson Lake, Idaho	4	14		0.0				
Rock Creek	3	5	2	40.0		1	1	1
Samish Lake	1	3	3	100.0	3	1	3	
Snake River, Clarkston	2	6	5	83.5		5	4	4
Snake River, Davis Bar	4	4	4	100.0	2		3	1
Snake River, Wawawaii	1	10	10	100.0	4		10	
Sprague Pothole	5	30	4	13.3	4			
Union Flat Creek	1	6	5	83.3	1			3
Williams Lake	7	36	15	41.7	13	10	1	

Table 3-7	Rates	of infection	for the various	streams a	nd lakes
Table 5-7.	nales	or intection	IOI LITE VALIOUS	stiedills a	nu lakes.

The following native fish may be found in the South Fork Palouse River:

- Longnose dace
- Speckled dace
- Redside Shiner
- Largescale sucker
- Bridgelip sucker

The following species have been introduced in the watershed:

- Brook trout
- Brown Trout
- Rainbow trout
- Northern pikeminnow

Other biological groups useful as indicators to presence of stressors were benthic algae sampled in the South Fork Palouse River and Paradise Creek as part of Munn et al. (2002) study

for response to environmental gradients in agriculturally dominated landscapes. Pattern of results showed that Blue-green algae dominated the forested sites, composing 85% to 95% of the relative abundance, with the remainder consisting of small percentages of diatoms, green, and red algae. In contrast, diatoms tended to dominate the urban and range sites, with blue-greens far less dominant. The range sites were somewhat unique in that the red alga *Audouinella violacea* composed 35% of the community at the upstream range site, which was fed by shallow groundwater; however, this red alga decreased to only 5% at the downstream range site. Sites in the dryland and irrigated agricultural areas contained various combinations of blue-greens and diatoms, with the relative abundance of either varying substantially from site to site. Both the South Fork Palouse River and Paradise Creek were considered to be in the urban landscape because approximately 95% of instream flows comes from wastewater treatment discharge (Munn et al. 2002). Distinct biological patterns emerged in each of the stream settings: forested sites, dryland/irrigated agricultural areas, and urban landscape. The significance for appearance of each pattern relates to the food source (e.g., surface water quality) and physical habitat used for colonization.

Dr. Fred Rabe et al. (1993) have monitored the benthic macroinvertebrate communities of Paradise Creek since 1991. The data used in the UAA study (IDHW-DEQ 1994) was collected in October 1992 and February, April, June 1993. Samples were collected along the entire length of Paradise Creek and portions of the South Fork of the Palouse River, but only those stations which correspond with the UAA stations are presented below in Table 3-8. Schwartz Creek was used as a reference site.

In most of the samples collected for the UAA study (IDHW-DEQ 1994), Chironomidae (midges) was the dominant insect group in Paradise Creek and are therefore ecologically important because of their high densities and diversity. Total midge abundance in excess of 30% probably indicates depressed habitat/water quality (Wisseman 1993). In contrast, midge populations in samples from Schwartz Creek were well below 30% of the total abundance. Other dominant insects included Odonata, the dragonflies and damselflies. In the October samples, high numbers of damselflies were found at White and Troy and Sixth and Dealcin. Damselflies are extremely tolerant of impaired water conditions and sediment, their ability to climb onto the reed canary grass enables them to partially avoid the water (Rabe et al. 1993). Oligochaeta (aquatic earthworms) had the highest density of the non-insects at the three lower sites. In October, over a thousand individuals per square meter were recorded below the WWTP, this is common below sewage effluent. Other non-insect dominants were Gastropoda (snails) and Hirudinea (leeches).

Results from fish shocking in Paradise Creek UAA study (IDHW-DEQ, 1994) are in Table 3-9.

Fish resources within the Palouse River sub-basin are limited by long standing in-stream, riparian, and up-land habitat conditions, which have contributed to degraded water quality, extreme seasonal fluctuations in water quantity, and subsequent degraded in-stream habitat conditions. The existing fish community in the lower Palouse River (below Palouse Falls) consists of the salmonid species noted previously, as well as native resident species including

largescale sucker (*Catostomus macrocheilus*), redside shiner (*Richardsonius balteatus*), northern pikeminnow (*Ptychocheilus oregonensis*), and chiselmouth (*Acrocheilus alutaceus*). Recent fish survey work conducted by WDFW below the Palouse Falls have confirmed the presence of sub-adult bull trout (*Salvelinus confluentus*), rainbow trout / juvenile steelhead, tench (*Tinca tinca*), bluegill (*Lepomis macrochirus*), yellow perch (*Perca flavescens*), northern pikeminnow, chiselmouth, redside shiner, and dace spp. (Cook 2001).

	Month	Total abundance	Species EPT-taxa richness richness		Hilsenhoff Biotic Index	Percent dominant taxa
7	Oct	213	31	2	7	15
View rk	Feb	219	16	2	4.2	41
Mt. ⁷ Pa	Apr	398	31	3	6.7	24
Π	Jun	380	38	4	7.4	18
	Oct	645	28	0	7.6	32
te & 'oy	Feb	133	19	1	7.9	19
Whi Tr	Apr	131	24	0	7.8	27
	Jun	195	26	2	8.2	21
i	Oct	847	23	0	8.9	35
Jeak	Feb	77	14	0	8	41
۱ <u>%</u> ا	Apr	200	23	0	8.1	16
6^{tt}	Jun	194	14	0	8.4	19
	Oct	1412	5	0	9	73
ow VTP	Feb	478	7	0	9	87
Bel WV	Apr	427	6	0	9	80
	Jun	803	12	0	8.7	50
Z	Oct	146	36	21	3.2	7
vart	Feb		34	20		
Schv	Apr		29	18		
J.	Jun	56	33	18	4.5	

 Table 3-8.
 Macroinvertebrate results in Paradise Creek.

Table 3-9. Electrofishing results in Paradise Creek.

Species	Number	Size	Location
Speckled dace (<i>Rhinichthys osculus</i>)	>50	1-3"	Mountain View Park ¹ , White & Troy
			Hwy., Guy Wicks Field
Bridgelip sucker (<i>Catostomus columbianus</i>)	11	3-6"	White Avenue & Troy Highway
Longnose sucker (Catostomus catostomus)	1	6"	White Avenue & Troy Highway

1 Shocking recovery estimated at 20% due to large amounts of duckweed on water surface.

2
Historic stocks of native species that continue to inhabit the Palouse River above the falls include chiselmouth, northern pikeminnow, largescale sucker (*Catostomus macrocheilus*), redside shiner, speckled dace (*Rhinichthys osculus*), and cottid species. Thirty-seven fish species have been documented within the Palouse River sub-basin. No ESA listed species have been documented as occurring above the Palouse Falls. A synoptic list of fish species for the Palouse River sub-basin is listed in the Table 3-10 below (Cook 2001).

Stream habitat usage by resident salmonids is dictated by the extremely few locations within the Palouse River sub-basin where agriculture, grazing, road building, and logging practices have not significantly altered habitat conditions such that salmonids can survive. There are a small number of tributaries to the Palouse River, which exhibit isolated reaches of relatively intact natural habitats and which contain self-sustaining wild populations of salmonids. There is speculation on distribution and abundance of salmonids in the tributaries to the Palouse River, but there have been no efforts to conduct genetic analysis on these populations. The relationship of these disjunct populations to redband rainbow trout and any hybridization with hatchery-reared fish is currently unknown (Cook 2001). Rainbow trout from several origins have been introduced throughout the Palouse Sub-basin. WDFW has regularly stocked rainbow trout in Chapman Lake, Rock Lake, Williams Lake, Hog Canyon Lake, Fish Trap Lake, Sprague Lake and other smaller water bodies within the sub-basin.

Appearance of salmonids in the Palouse River and South Fork Palouse River drainages can be accounted for by past stocking programs. The first stocking of rainbow trout occurred in 1950 in the Palouse River, Idaho. The size of rainbow trout stocked has been "catchable" (8-12 inches), to provide an immediate return to the creel. There is evidence that natural reproduction is occurring, as they have been recently sampled in streams where stocking never occurred, or is no longer occurring. Re-distribution of rainbow trout from known points of stocking has been opportunistic and, in some cases, has resulted in successful perpetuation of a hatchery fish stock. The stock of rainbow planting has varied over the years depending on egg availability (Cook 2001).

Paradise Creek has reportedly supported several species of trout over the past century. A recent Beneficial Use Attainability Study included a quote that stated brook trout have a current, sustaining population in upper Paradise Creek and tributaries in the Palouse Mountain Range (Wertz 1993). There have also been reports that rainbow trout caught at a fish derby from Reaney Park swimming pool in Pullman could be re-introduced into locations along nearby South Fork Palouse River. Pullman Park and Recreation employees have stated that some children release the trout caught at the fish derby into the nearby river with potential to migrate as far as Paradise Creek. If rainbow trout do migrate as far as Paradise Creek, they likely return to the SFPR seeking habitat characterized by deeper, cooler waters with a higher dissolved oxygen concentration (Doke and Hashmi 1994).

Species	Origin	Status
Bull trout (Salvelinus confluentus) *	N	U
Steelhead trout */ Rainbow trout (Oncorhynchus mykiss)	Ν	O/U
Westslope cutthroat trout (Oncorhynchus clarkii lewisi)	Ν	O/U
Fall Chinook salmon (Oncorhynchus tshawytscha) *	Ν	O/S
Mountain whitefish (Prosopium williamsoni)	Ν	O/U
Brook trout (Salvelinus fontinalis)	Ν	O/U
Lahontan cutthroat trout (Oncorhynchus clarkii henshawi)	Е	O/U
Brown trout (Salmo trutta)	Е	O/U
Northern pikeminnow (<i>Ptychocheilus oregonensis</i>)*	Ν	C/S
Speckled dace (Rhinichthys osculus)*	Ν	C/U
Longnose dace (Rhinichthys cataractae)*	Ν	O/U
Redside shiner (Richardsonius balteatus)*	Ν	C/U
Chiselmouth (Acrocheilus alutaceus)*	Ν	O/U
Peamouth (<i>Mylocheilus caurinus</i>)	Ν	O/U
Largescale sucker (Catostomus macrocheilus)	Ν	O/U
Longnose sucker (Catostomus catostomus)	Ν	O/U
Bridgelip sucker (Catostomus columbianus)	Ν	C/S
Mountain sucker (Catostomus platyrhynchus)	Ν	O/U
Tench (<i>Tinca tinca</i>)	Е	O/U
Walleye (Sander vitreus)	Е	O/S
Largemouth bass (Micropterus salmoides)*	Е	O/S
Brown bullhead (Ictalurus nebulosus)*	Е	O/U
Yellow bullhead (Ictalurus natalis)	Е	O/U
Smallmouth bass (Micropterus dolomieu)*	Е	O/S
Slimy sculpin (<i>Cottus cognatus</i>)	Ν	O/D
Mottled sculpin (Cottus bairdi)*	Ν	O/U
Brook stickleback (Culaea inconstans)	Е	O/I
Paiute sculpin (Cottus beldingii)* (cottid species identification /	Ν	C/U
location(s) in question)		
Torrent sculpin (Cottus rhotheus)	Ν	O/U
Goldfish (Carassius auratus)	Е	O/U
Yellow perch (Perca flavescens)*	Е	O/U
Carp (Cyprinus carpio)*	Е	C/U
Bluegill (Lepomis macrochirus)*	Е	O/U
Crappie (Pomoxis spp.)*	Е	O/S
Channel catfish (Ictalurus punctatus)	E	O/S
Grass pickerel (Esox americanus vermiculatus)	E	O/U
Pumpkinseed (Lepomis gibbosus)	Е	O/U

Table 3-10. Fish species present in the Palouse Sub-basin, Washington (Cook 2001).

E=Exotic, *N=Native*, *A=Abundant*, *C=Common*, *O=Occasional*, *U=Unknown*, *S=Stable*, *I=Increasing*, *D=Decreasing*, * *only denotes presence below Palouse Falls*

3.3 Current Instream Biological Characterization

Field data collections were made from September 22 through September 30, 2010. A total of 28 sites were visited, yielding nineteen of the proposed twenty sampling sites (Figure 3-4). Of the sites deemed unsampleable, five were dry reaches, three had undetermined landowners, and one was an active access denial. The twentieth sampling site, located on Dry Fork Creek, was abandoned after reconnaissance found that the primary and oversample sites, as well as all

other accessible reaches, were dry. In order to maintain the target of ten benthic samples, the collection designated for the Dry Fork Creek site (SFPR-037195) was transferred to site SFPR-123211 on the South Fork Palouse River.

The following sections detail the results of the sampling effort. In most instances the data are presented by the four main stream systems comprising the South Fork Palouse River drainage; South Fork Palouse River (SFPR), Missouri Flat Creek (MFC), Paradise Creek (PC) and Dry Fork Creek (DFC). Site-specific results are beyond the scope of the current study; however, data summaries are provided for each site in Appendix C.

Figure 3-4. Map indicating the status of sampling sites in the South Fork Palouse River watershed.

3.3.1 Physical habitat

An RBP habitat assessment was completed at each sampling site. Overall, physical habitat conditions rated higher in the larger streams, with mean sites scores of 100 and 106 in the South Fork Palouse River and Paradise Creek, respectively, compared to Missouri Flat Creek (65) and Dry Fork Creek (40) (max. – 200 points). Most metrics scored in the "fair" and "suboptimal"

ranges and indicated the highest degree of degradation in pool variability, channel sinuosity, bank stability, bank vegetative protection and riparian cover (Table 3-11). Channel flow status and channel alteration were among the highest scoring metrics (suboptimal, mean: 13.2 and 12.5 respectively) at all sites.

Table 3-11. Rapid Bioassessment Protocol (RBP) Habitat Scores at study sites in the South ForkPalouse River watershed. Data are presented in ascending order, from downstreamto upstream.

	Station	oifaunal Ibstrate	ol Substrate	ool Variability	diment eposition	nannel Flow	nannel Alteration	nannel Sinuosity	Ba Stab	nk pility	Vege Prote	tative ection	Ripa Hat	urian pitat	otal Score
	Number	El Sc	P(P(Ď Ň	IJ	IJ	C	L	R	L	R	L	R	Ţ
	SPFR-033355	16	16	13	18	18	20	9	7	6	1	1	7	9	141
	SPFR-098891	11	15	11	7	13	10	6	7	4	1	1	3	2	91
	SPFR-127307	14	18	11	12	20	19	9	5	6	1	1	1	8	125
	SPFR-051531	13	12	12	13	16	17	8	6	8	2	2	3	3	115
PR	SPFR-106827	18	17	12	8	8	10	6	4	3	2	3	3	4	98
SF	SPFR-057675	12	13	11	8	16	12	7	3	3	2	2	4	3	96
	SPFR-123211	13	8	11	11	12	13	9	3	3	1	1	7	4	96
	SPFR-031051	13	11	11	19	18	14	10	7	7	1	1	5	5	122
	SPFR-137547	7	8	12	7	8	14	11	6	4	3	3	2	2	87
	SPFR-126994	16	15	17	17	14	16	14	5	5	1	1	2	2	125
FC	SPFR-008523	16	12	13	7	13	5	2	3	3	1	1	1	1	78
Μ	SPFR-030283	1	2	2	3	2	13	13	2	2	1	1	4	6	52
	SPFR-022859	12	13	11	18	18	11	8	7	7	2	2	4	6	119
	SPFR-121163	6	11	11	18	19	11	9	4	5	2	2	1	6	105
С	SPFR-080203	14	11	13	15	14	14	8	3	4	1	1	5	3	106
Р	SPFR-108562	8	11	11	18	15	13	10	7	7	8	8	2	3	121
	SPFR-026642	9	8	11	18	20	13	6	8	8	9	9	2	2	123
	SPFR-081483	6	7	4	4	5	12	8	7	7	1	1	1	1	64
DFC	SPFR-012619	2	1	1	13	2	1	0	8	8	1	1	1	1	40

Abbreviations of tributaries are as follows: SFPR - South Fork Palouse River (mainstem); MFC - Missouri Flat Creek; PC - Paradise Creek; DFC - Dry Fork Creek.

Instream habitat features, including epifaunal substrate, pool substrate, pool variability and sediment deposition, were generally lacking in Missouri Flat Creek and Dry Fork Creek. These systems maintain very low water levels and flow was often minimal or, in some cases, absent. South Fork Palouse River and Paradise Creek sites were mainly limited by reduced sinuosity and degraded bank and riparian habitat. Most of the sites in these streams were adjacent to paved

roads, railroads, and agricultural fields; thus, many were laterally constrained by these features and maintain minimal riparian habitat.

Substrate characterizations were completed using a modified Wolman pebble count. Fines were the dominant substrate in Missouri Flat Creek, Paradise Creek and Dry Fork Creek (Table 3-12). The South Fork Palouse River was largely comprised of gravel (approximately 45 percent) and fines (23 percent). These results support those of the habitat assessment in showing a lack of instream habitat and, particularly, cover in the form of larger substrate (e.g., cobble and boulder). Particles comprising these size classes were generally lacking, comprising 15 percent or less of available substrate. Exceptions to this are sites in the lower reaches of the South Fork Palouse River (near Colfax), where cobble/boulder associations make up more the 25 percent of the samples.

Table 3-12. Substrate characterizations based on modified Wolman pebble counts at studysites in the South Fork Palouse River watershed. Data are presented in ascendingorder, from downstream to upstream.

		Percent	Percent	Percent	Percent	Percent	Percent
	Site No.	Fines	Sand	Gravel	Cobble	Boulder	Bedrock/Hardpan
	SPFR-033355	0	9	26	12	53	0
	SPFR-098891	5	0	73	11	5	6
	SPFR-127307	17	0	51	10	11	0
	SPFR-051531	18	0	54	15	2	0
PR	SPFR-106827	8	0	49	37	6	0
SF	SPFR-057675	34	0	35	19	11	10
	SPFR-123211	39	0	29	24	8	0
	SPFR-031051	41	1	45	6	3	4
	SPFR-137547	33	13	28	8	4	0
	SPFR-126994	34	7	57	2	0	0
£	SPFR-008523	32	0	36	14	18	0
Μ	SPFR-030283	62	3	14	8	3	10
	SPFR-022859	13	9	51	4	23	0
	SPFR-121163	42	2	35	4	1	16
J	SPFR-080203	22	2	32	0	0	44
Ь	SPFR-108562	47	4	43	6	0	0
	SPFR-026642	71	3	4	1	1	20
	SPFR-081483	90	0	0	0	0	10
DFC	SPFR-012619	100	0	0	0	0	0

Densiometer readings were taken at the mid-channel and stream bank locations at the downstream, mid-point and upstream portions of the sampling reach. Due to the abundance of reed canary grass, separate measurements were made including its presence. Riparian areas, as mentioned previously, were limited and lacked any significant woody vegetation. As a result,

shading was generally low, averaging just 17 percent across all sites and ranging from a low of 0 percent at several locations to approximately 68 percent at Paradise Creek (Table 3-13). Estimates including reed canary grass averaged approximately 36 percent, including 100 percent shading at a single site on the South Fork Palouse River. Shading was typically reduced in the lower portions of the South Fork Palouse River and Paradise Creek watersheds, where greater mean wetted width decreased the proportion of stream exposed to shading. This observation is more pronounced in the estimates that include reed canary grass.

	Station Number	Percent Shading Without RCG	Percent Shading With RCG
	SPFR-033355	0.0	0.00
	SPFR-098891	1.6	5.6
	SPFR-127307	9.8	13.01
	SPFR-051531	5.9	34.0
PR	SPFR-106827	4.6	9.2
SF	SPFR-057675	55.9	72.6
	SPFR-123211	11.1	46.1
	SPFR-031051	11.1	19.9
	SPFR-137547	49.4	49.4
	SPFR-126994	0.0	100.0
fC	SPFR-008523	14.4	26.1
W	SPFR-030283	7.8	74.5
	SPFR-022859	11.8	28.8
	SPFR-121163	4.3	18.3
C	SPFR-080203	67.7	82.7
Ч	SPFR-108562	43.8	43.8
	SPFR-026642	24.8	39.2
	SPFR-081483	0.0	25.5
DFC	SPFR-012619	0.0	0.0

Table 3-13. Percent shading estimates with and without reed canary grass (RCG) at study sites in the South Fork Palouse watershed. Data are presented in ascending order, from downstream to upstream.

* Indicates differences in values rather than percent increase.

3.3.2 Water quality

Water quality parameters are presented as Table 3-14. Three of the four streams, South Fork Palouse River, Missouri Flat Creek and Paradise Creek, show similar values of pH and conductivity. However, mean temperatures are 3°C to 4°C higher in the South Fork Palouse River and Paradise Creek, likely due to the high proportion of effluent discharging from wastewater treatment plants on those systems. More significantly, low dissolved oxygen levels

Table 3-14. Water quality data collected at the start and end of biological sampling at each sitein the South Fork Palouse River watershed. Data are presented in ascending order,from downstream to upstream.

	Station Number	Date	Time (approximate)	Temperature (°C)	рН	DO (mg/l)	Conductivity (µs/cm)
	SPFR-033355*	09/22/2010	9:20	12.67	8.05	9.98	560.8
	SPFR-098891	09/28/2010	8:55	15.33	7.97	8.5	563.9
	SPFR-098891	09/28/2010	11:30	16.7	8.21	11.76	556.4
	SPFR-127307	09/28/2010	14:00	17.72	7.74	11.22	611.5
	SPFR-127307	09/28/2010	15:45	18.24	8.03	12.22	603.8
	SPFR-051531	09/29/2010	8:30	15.5	7.64	6.27	643.2
	SPFR-051531	09/29/2010	10:55	16.32	7.76	8.18	647.4
	SPFR-106827	09/29/2010	12:40	18.42	8.05	12.78	677.6
PR	SPFR-106827	09/29/2010	16:05	19.44	8.39	14.5	666.5
SF	SPFR-057675	09/30/2010	7:50	12.57	7.76	7.93	669
	SPFR-057675	09/30/2010	10:10	12.83	7.85	8.74	687.9
	SPFR-123211	09/30/2010	11:20	13.25	7.6	7.79	371.5
	SPFR-123211	09/30/2010	14:05	15.9	7.75	10.38	366.2
	SPFR-031051	09/25/2010	10:05	11.62	7	6.49	308.6
	SPFR-031051	09/25/2010	12:30	13.41	6.96	6.48	292.3
	SPFR-137547	09/25/2010	15:30	14.63	6.72	8.05	323.5
	SPFR-137547	09/25/2010	17:45	13.43	6.75	7.17	323.8
	SPFR-126994	09/26/2010	15:45	11.56	6.23	8.73	71.6
	SPFR-126994	09/26/2010	18:15	11.57	6.36	8.15	72.2
	SPFR-008523	09/26/2010	11:55	13.3	7.32	6.93	464.3
FC	SPFR-008523	09/26/2010	14:20	14.08	7.34	7.57	490.4
Μ	SPFR-030283	09/26/2010	9:15	9.1	7.08	2.55	399
	SPFR-030283	09/26/2010	10:45	8.43	7.18	2.02	381.1
	SPFR-022859	09/24/2010	8:00	13.82	7.26	7.1	431.2
	SPFR-022859	09/24/2010	11:45	14.24	7.11	8.12	370
	SPFR-121163	09/24/2010	12:55	14.31	7.07	8.33	405.9
	SPFR-121163	09/24/2010	15:30	15.36	7.07	8.36	501
C C	SPFR-080203	09/27/2010	12:50	18.04	7.35	7.61	718.8
8	SPFR-080203	09/27/2010	16:50	18.76	7.28	7.02	742.7
	SPFR-108562*	09/23/2010	8:55	11.62	6.97	1.65	401.7
	SPFR-026642*	09/23/2010	14:15	12.68	6.91	5.61	231.3
	SPFR-081483	09/27/2010	9:00	14.55	6.77	0.67	294.2
	SPFR-081483	09/27/2010	9:45	14.93	6.73	0.91	303.3
FC	SPFR-012619	09/25/2010	8:20	10.57	6.62	5.88	256.8
Q	SPFR-012619	09/25/2010	8:50	10.7	6.71	5.78	250.9

* Only one measure of water quality recorded (collected at the start of biological sampling)

were evident in Missouri Flat Creek, Paradise Creek, and Dry Fork Creek, ranging from 4.8 to 5.8 mg/L. The sites on Missouri Flat Creek and Dry Fork Creek were largely comprised of pools interspersed within dry sections that made up approximately 30 percent to 40 percent of the reach. The low dissolved oxygen values, coupled with colder water temperature and low conductivity suggest that these reaches may be spring fed. Though not below the 4.0 mg/L standard generally applied to aquatic life uses, these sites may fall below that criterion seasonally.

3.3.3 Biological conditions

Nearly 5,100 fish representing nine species were collected during fish community sampling, 4,200 of which were from the South Fork Palouse River (mean: 384 fish/site) (Table 3-15). Diversity was low but typical of the region, with nine species collected in the South Fork Palouse River and five species collected in both Missouri Flat Creek and Paradise Creek. No fish were collected at the site on Dry Fork Creek. Species unique to the South Fork Palouse River include chiselmouth (*Acrocheilus alutaceus*), fathead minnow (*Pimephales promelas*), pumpkinseed (*Lepomis gibbosus*) and rainbow trout (*Oncorhynchus mykiss*). All the species captured are considered tolerant or intermediately tolerant of non-specific stressors; no intolerant species were encountered.

Throughout the study area, speckled dace (*Rhinichthys osculus*) were the most abundant species; however, redside shiner (*Richardsonius balteatus*) were numerically dominant in the South Fork Palouse River. Mean catch per unit effort (CPUE), expressed as the number fish captured per 1000 seconds of electrofishing per site, yielded similar results with the highest values for speckled dace and redside shiner. However, chiselmouth and bridgelip sucker (*Catostomus columbianus*) showed good recruitment to the gear with values of 20 and 17 fish per 1000 seconds of effort, respectively.

Minimum and maximum lengths (total length (mm)) were recorded for each species. Specimens collected in the South Fork Palouse River were generally larger than their cohorts collected in the other streams (Table 3-15). Similarly, mean aggregate biomass measures were more than four times higher (3,587 g/site) than those in Missouri Flat Creek (414 g/site) and Paradise Creek (820 g/site).

Benthic macroinvertebrate samples were collected from ten sites; five in the South Fork Palouse River, one in Missouri Flat Creek and four in Paradise Creek. No samples were collected in Dry Fork Creek. Metrics describing taxa richness, relative abundance and community structure are provided as Appendix D and are summarized below.

With exception to two sites (SFPR-022859 and SFPR-080203) in Paradise Creek, taxa richness was greater than 29 per site. Taxa of the order Diptera were dominant in five of six samples from the South Fork Palouse River; Ephemeroptera taxa were most abundant in the remaining samples. In Paradise Creek, Diptera and Oligochaeta taxa comprised 53 percent of the samples at sites SFPR-108562 and SFPR-080203, respectively. Coleoptera were the dominant taxa at

sites SFPR-022859 and SFPR-121163 (80 percent and 51 percent, respectively). Oligochaeta taxa comprised 54 percent of the sample at Missouri Flat Creek.

The presence of EPT (Ephemeroptera, Plecoptera, Trichoptera) taxa are generally an indicator of good water quality conditions. These organisms are largely absent from the samples, except from a single site on the South Fork Palouse River (SFPR-098891) and Paradise Creek (SFPR-121163) where they comprise 34 percent and 19 percent of the samples, respectively. Conversely, tolerant taxa are in high relative abundance, ranging from 12 – 31 percent in the South Fork Palouse, 21 – 41 percent in Paradise Creek, and 24 percent in Missouri Flat Creek. Hilsenhoff Biotic Index scores provide further confirmation of degraded conditions and are presented in Table 3-16. Only two sites received a "good" rating, the remainder range from "fair" to "very poor".

			Relative	Min.	Max.	CPUE
	Species	Number	Abundance (%)	Length (mm)	Length (mm)	Fish/1000 sec
	Bridgelip Sucker	334	7.9	98	170	17.3
	Chiselmouth	304	7.2	111	155	19.8
	Fathead Minnow	3	0.1	77	77	1.1
	Largescale Sucker	258	6.1	121	176	11.4
PR	Northern Pikeminnow	263	6.2	94	211	11.0
SF	Pumpkinseed	1	0.0	92		0.4
	Rainbow Trout	4	0.1	83	182	2.7
	Redside Shiner	1572	37.2	55	126	64.8
	Speckled Dace	1490	35.2	51	81	53.5
	Total/number per site	4229/384.5				
	Bridgelip Sucker	1	1.1	74		0.8
	Largescale Sucker	2	2.1	132	173	1.5
FC	Northern Pikeminnow	31	33.0	91	216	23.6
Μ	Redside Shiner	21	22.3	58	96	16.0
	Speckled Dace	39	41.5	39	81	16.1
	Total/number per site	94/47.0				
	Bridgelip Sucker	121	16.1	79	146	17.0
	Largescale Sucker	24	3.2	99	165	4.5
C	Northern Pikeminnow	6	0.8	155	215	1.5
Ч	Redside Shiner	201	26.7	61	113	31.5
	Speckled Dace	400	53.2	45	75	50.0
	Total/number per site	752/125.3				
FC	No fish					
D						

	Site No.	Score	Narrative Rating
	SPFR-098891	5.23	Good
~	SPFR-106827	6.65	Fairly Poor
[FP]	SPFR-057675	6.28	Fair
	SPFR-123211	7.15	Fairly Poor
	SPFR-031051	6.81	Fairly Poor
Ŋ			
W	GDED 000500	7.0	
	SPFR-008523	7.3	Fairly Poor
	SPFR-022859	4.96	Good
ບ	SPFR-121163	5.63	Fair
P	SPFR-080203	7.48	Fairly Poor
	SPFR-108562	8.87	Very Poor

Table 3-16. Hilsenhoff Biotic Index scores and narrative values at study sites in the South ForkPalouse watershed, 2010.

4.0 DISCUSSION

4.1 Comparisons of Historic and Current Conditions

Obvious barriers to migration of fish species that may have been the primary influence in establishing distinct biological communities are: Palouse Falls (current and past locations), and changes to stream flow patterns following settlement of the region. In-stream habitat may have been limiting (as modified by stream flow patterns) in some locations to successful completion of life stages for species of fish. Salmonid fish species are thought to be limited to that portion of the Palouse drainage below Palouse Falls and not resident in the upper Palouse River drainage.

A statement made by a long-time resident and recorded by Doke and Hashmi (1994) indicates that cutthroat trout (likely an isolated population of Yellowstone cutthroat trout) may have been resident in the upper portion of the South Fork Palouse River drainage (Paradise Creek) prior to European settlement The presence of this species may indicate that the greater portion of this tributary may have provided suitable physical habitat and water quality conditions for perpetuating a cutthroat trout population prior to the development of a thriving agricultural industry. Loss of elevation head in the groundwater table may have diminished aquatic habitat area and limited once useable stream reaches in Paradise Creek.

There are no additional reports from historic literature that indicate presence of other salmonid species. The physical barrier presented by Palouse Falls had limited the potential for salmonid distribution into the watershed and a shift to resident forms. Some of the oldest records of fish species in the area were noted by Lupher (1936) and Scheid (1937) when a cyprinid fossilized skeleton was found in the Latah formation along the lower end of the Clearwater, Idaho river drainage. This fossilized skeleton was most closely related to an Asian cyprinid and may indicate that abundance of cyprinids currently found in the surrounding drainages (e.g., South Fork Palouse River) is endemic.

The few observations of rainbow trout in the South Fork Palouse River are likely the result of State or private stocking efforts. Any occurrences outside the initial stocking locations (e.g., Paradise Creek) can be attributed to fish movements related to seeking preferred temperature and dissolved oxygen conditions. Current evidence suggests that the greatest movement of this introduced species is between Paradise Creek, in the vicinity Reaney Park, and the South Fork Palouse River just above Pullman. It is unknown if these fish persist through warm summer conditions and, if so, whether they are naturally reproducing.

Comparison of fish species collected in 2010 with those reported as endemic from the Palouse River drainage (Cook 2001) indicates that at least one-third have been introduced into the South Fork Palouse mainstem (comparison of results between Table 3-10 and Table 3-15). All species collected in 2010 from Missouri Flat Creek and Paradise Creek were considered native to this drainage. Dry Fork Creek could not be sampled as the stream channel was de-watered at the end of the summer index period and the randomized site selection sample design required the site be retained and characterized in current condition. Historic literature confirms that many of the original species endemic to this drainage still exist and that it is possible that those not observed in this study (from the Cook 2001 comprehensive fish species list) may have been displaced by exotic (introduced) species.

Benthic macroinvertebrate (BMI) communities are used as both indicators of general stream condition as well as for consideration as a food base for other aquatic life. One of the indicators for describing condition of the BMI community is the Hilsenhoff Biotic Index that reflects intensity and effect of nutrient enrichment at a stream site. The best BMI community conditions were at the lowest sampling site in the South Fork Palouse River with the most impaired condition measured below the Pullman WWTP (Site SPFR-106827). The BMI indicator used to determine biological condition was the Hilsenhoff Index; known to evaluate eutrophic impacts by favoring less sensitive species. The presence of dense algal growth on larger substrate materials below the WWTP was an indication of eutrophication with a reduction in hard-bottomed substrate living surface that supported the higher quality BMI community ate the lowest sampling site. The dense algal community below the WWTP increased dissolved oxygen concentrations by a measureable amount (Table 3-14) during peak photosynthetic activity during the day and may have prohibited colonization by the pollution-intolerant BMI species. The BMI community at the next site on South Fork Palouse River and above the WWTP was in better condition (Table 3-16; Fair). Differences in habitable substrates by sensitive BMI species influence the type and condition of a community. Nutrient enrichment in the South Fork Palouse River has as great an effect on the benthic macroinvertebrate community as dewatering of the stream channel; both result in inhabitation of pollution-tolerant species, with BMI community abundance directly related to fluctuation in flows.

Paradise Creek BMI communities responded differently below the Moscow WWTP (Site SFPR-022859) outfall where substrates that dominated were moderately-sized and water temperature among the lowest observations made during the recent 2010 study. Similar results were obtained in the 2010 BMI assessment as were reported by Rabe et al. 1993. The benthic macroinvertebrate community condition improves as the distance from the Moscow WWTP increases. Based on this confirmation it appears that a comparison between biological conditions from the 1975-current and data collected during summer 2010, factors affecting the biological community have not changed.

4.2 Limiting Factors

A number of physical and chemical factors have been investigated in the South Fork Palouse River drainage and tributaries for effects on aquatic life. Concerns with water quality during the latter part of the 1975-current time period examined in this study have been focused on ammonia, dissolved oxygen, pH, and temperature conditions (Pelletier 1993; Carroll and Mathieu 2006; Bilhimer, Carroll, and Sinclair 2006). These parameters have been characterized primarily during the most stressful time of year (mid-summer) and present widespread challenges to fish migration in some populations. Particularly common in streams within this region, are temperature and dissolved oxygen barriers that can isolate populations of sensitive fish species and prohibit migration through reaches of the drainage where these barriers establish during the summer season.

Augmentation of flow in stream channels benefits conditions by improving availability of water and mediating temperatures for aquatic life. Increases to stream channel flow in Paradise Creek and below the Wastewater Treatment Plant (WWTP) in Pullman result in increases in food base (e.g., algae) and in useable habitat (Munn et al. 2002). Benthic macroinvertebrate (BMI) data showed declining community abundances at sites further downstream from the Pullman WWTP and an increase in number of pollution-sensitive species. The species list generated from below the WWTP are known to be tolerant of low dissolved oxygen concentrations and so the early morning dissolved oxygen concentrations that dip below 2 mg/L had no effect, but did support a greater number of filter-feeding BMI.

Conditions in the stream today are first explained by a step-wise progression of impacts beginning with the type of historic development of the region. Agricultural activity (e.g., beginning with fruit growing and then transitioning to cultivated wheat crops) initially required irrigation and as the human population of the area grew, groundwater became an important source for drinking water. The loss of flow in streams had first begun when water withdrawal was focused on crop irrigation and then continued when demand for growing settlements increased. An additional consideration is that growing settlements (now cities) have introduced new groups of stressors to stream channels in the South Fork Palouse River drainage. Various types of pollutants related to urban activity and commercial agriculture operations are associated with toxics like some of the more common metals (lead, zinc, cadmium, chromium, copper, mercury, arsenic, et al. in trace quantities) as well as pesticides associated with urban/sub-urban development and agricultural crops.

It was inevitable that alteration of the groundwater table in various quantities throughout this drainage would limit surface water flow in select portions of this drainage. Those stream segments incised into bedrock channels are perennial streams whereas those incised into loess are associated with intermittent flow during portions of the year Russell (1897). Localized dewatering of the groundwater table results in either drying of a channel segment or very low stream flow, depending on composition of the stream bottom.

4.3 Conclusions

There has been an overall loss of native fish species in all portions of this drainage. Currently, the South Fork Palouse River drainage from the confluence of the Palouse River and to the Idaho border is designated spawning/rearing habitat (Ecology 2006). This designated use is a goal for maintaining successful re-generation of salmonid populations where emergence occurs outside the summer season (September 16 through June 14). Current fisheries conditions in the South Fork Palouse drainage are dominated primarily by warmwater species. The few salmonids identified from the summer 2010 surveys indicate that available habitat favors the warmwater species. Cook (2001) notes that prior to European settlement in the region, a diverse assemblage of fish species existed above Palouse Falls and were dominated by cyprinids

and catastomids. This observation suggests that salmonids have only made opportunistic appearances above the natural barrier (Palouse Falls) through large-scale catastrophic events. Designated aquatic life uses now in effect will encourage survival of re-stocked salmonids, but efforts may not be synchronized with the appearance and subsequent disappearance of salmonid fisheries introduced through natural catastrophic events prior to European settlement. Protection of existing salmonid refugia has limited opportunities caused by largescale changes in the landscape promoting disjunct aquatic habitat corridors and that limit ability for migration. Disappearance of several warmwater species reported in Cook (2001) indicate that changes to habitat and water quality conditions in the South Fork Palouse River drainage may have an effect on endemic warmwater species. These changes are evident in other biological communities like the BMI that show a strong response to increased nutrients, for example, from obvious sources like multiple wastewater treatment plants.

Three factors that have changed since European settlement are flow availability, augmentation of flow, and changes in flow pattern. Flow availability in any segment of stream channels of this drainage is the primary driver for water quality issues. During settlement of this region groundwater withdrawals may have decreased the perennial flows in the streams. However, augmentation of the flows through discharges from the WWTPs may have returned the instream flow to levels comparable to historic conditions.

These factors affect the location and timing of aquatic habitat and refugia, water quality, erosion processes and rates, and species community makeup and distributions. The changes in water quality conditions are primarily a result of nutrient introduction and the corresponding biological response, and changes to stream channel properties.

The historical information located for use in this study indicated that the South Fork Palouse River drainage is typical of semi-arid streams in the Northwestern portion of the United States. This stream type experiences a wide range of temperature conditions that are dependent on seasonal climatic effects. Changes to flow patterns affect water temperature and these flow and temperature patterns are important to native species. As seasonal water temperature patterns change in portions of the drainage, the range for native species begins to shrink. This change in range is based on the need for specific optimum physicochemical requirements and the environmental tolerance of the life cycle stage for each species.

Currently the growth of human activities, in both urban and rural areas, has compounded challenges to the biological communities. The most stressed biological conditions in the South Fork Palouse River mainstem and tributaries like Paradise Creek are located in the urban stream settings. Historically, biological alterations would have been directly related to effects from low flow conditions during the summer months.

There are existing refugia in the drainage that can be protected and characteristics used to guide restoration of similar channel segments. The expansion of contiguous stream segments with suitable habitat and flow patterns would present the best opportunity for preservation of the current number of native species identified throughout the drainage.

The disturbance history of a stream prevents restoration to an original condition, but comparison with the original condition can be used as a guide for making decisions on the type of management practice that should be implemented and the order in which each should be implemented.

5.0 **REFERENCES**

Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C.

Behnke, R.J. and J.R. Tomelleri. 2002. Trout and Salmon of North America. The Free Press, New York, NY. 359p.

Black, A.E., J.M. Scott, E. Strand, R.G. Wright, P. Morgan, and C. Watson. 2002. Biodiversity and Land-use History of the Palouse Bioregion: Pre-European to Present. Land Use History of North America, Chapter 10. U.S. Geological Survey, <u>http://biology.usgs.gov/luhna/chap10.html</u>.

Bilhimer, D., J. Carroll, and K. Sinclair. 2006. South Fork Palouse River Temperature TMDL Study Quality Assurance Project Plan. Washington State Department of Ecology, Environmental Assessment Program. Pub. No. 06-03-104. pp.56.

Butler, V.L. 2004. Marmes Rockshelter: A Final Report on 11,000 Years of Cultural Use, Chapter 11: Fish Remains. (Brent A. Hicks, editor). pp. 320-337. Washington State University Press, Pullman, WA.

Carroll, J. and E. Snouwaert. 2009. South Fork Palouse River Fecal Coliform Bacteria TMDL: Water Quality Improvement Report. Washington State Department of Ecology. Pub. No. 09-10-060. pp. 147.

Carroll, J. and N. Mathieu. 2006. South Fork Palouse River Dissolved Oxygen and pH TMDL Study Quality Assurance Project Plan. Washington State Department of Ecology, Environmental Assessment Program. Pub. No.06-03-112. pp.63.

Clark, K. 2003. Tributaries of the Palouse River; Monitoring Report 2002. Technical Results Summary KPC-PR-02, Idaho Association of Soil Conservation Districts. Moscow, Idaho. 60p.

Cook, T., and Palouse-Rock Lake Conservation District. 2001. DRAFT Palouse Sub-Basin Summary. Prepared for the Northwest Power Planning Council. 124p.

Daubenmire, R.F. 1975. *Floristic Plant Geography of Eastern Washington and Northern Idaho*. Journal of Biogeography. Vol. 2, No. 1. pp. 1-18.

Daubenmire, R. F. 1970. Steppe vegetation of Washington. Washington Agricultural Experiment Station, Washington State University, Technical Bulletin 62.

Daubenmire, R. F. 1942. An Ecological Study of the Vegetation of Southeastern Washington and Adjacent Idaho. Ecological Monographs. Vol. 12, No. 1. pp. 53-79.

Dauble, D. 2000. Assessment of the Impacts of Development and Operations of the Columbia River Hydroelectric System on Mainstem Riverine Processes and Salmon Habitats, Final Report 2000, Report to Bonneville Power Administration, Contract No.1998AC08104, Project No. 199800402. Bonneville Power Administration No. DOE/BP-08104-1.

Doke, J. L. and G.B. Hashmi. 1994. Paradise Creek Watershed Characterization Study. Prepared for Palouse Conservation District, Pullman, WA. State of Washington Water Research Center, Washington State University. 240p.

Ecology (Washington Department of Ecology). 2009. Surface-water/Groundwater Interactions and Near-stream Groundwater Quality along the Palouse River, South Fork Palouse River, and Paradise Creek. Ecology Publication No. 09-03-007. Department of Ecology, Environmental Assessment Program, Olympia, WA. 75p.

Ecology (Washington Department of Ecology). 2006. Water Quality Standards for Surface Waters of the State of Washington: Chapter 173-201A WAC. Ecology Publication No. 06-10-091. Department of Ecology, Water Quality Program, Olympia, Washington. 122p.

Fulton, L. A. 1968. Spawning areas and abundance of Chinook salmon (*Oncorhynchus tshawytscha*) in the Columbia River basin-past and present. USFWS Special Scientific Report No. 571.

Fulton, L.A. 1970. Spawning Areas and Abundance of Steelhead Trout, Coho, Sockeye, and Chum Salmon, in the Columbia River Basin-Past and Present. USFWS Special Scientific Report No. 618.

Green, K.E., J.C. Ebbert, and M.D. Munn. 1994. Nutrients, suspended sediment, and pesticides in streams and irrigation systems in the Central Columbia Plateau in Washington and Idaho, 1959-1991. U.S. Geological Survey Water-Resources Investigations Report 94-4215. US Geological Survey, Tacoma, Washington.

Griffith, R.E. 1953. *Preliminary Survey of the Parasites of the Fish of the Palouse Area*. Transactions of the American Microscopical Society. Vol. 72, No. 1 (Jan., 1953). pp. 51- 57.

Hayslip, G. (Editor). 2007. Methods for the collection and analysis of benthic macroinvertebrate assemblages in wadeable streams of the Pacific Northwest. Pacific Northwest Aquatic Monitoring Partnership, Cook, Washington.

Henderson, R.D. 2005. Palouse River Tributaries Subbasin Assessment and TMDL. Idaho Department of Environmental Quality. Lewiston, Idaho. 323p.

HDR, Inc. 2007. Palouse (WRIA 34) Watershed Plan. 434p.

Idaho Department of Environmental Quality (IDEQ). 2007. South Fork Palouse Watershed Assessment and TMDLs. Lewiston, ID. 160p.

Idaho Department of Health and Welfare, Division of Environmental Quality (IDHW-DEQ). 1994. Water Quality Summary Report No. 29 Paradise Creek Use Attainability Assessment. North Central Idaho Regional Office. pp.32.

Idaho Department of Health and Welfare, Division of Environmental Quality (IDHW-DEQ). 1981. Water Quality Status Report No. WQ-46 South Fork Palouse River/Paradise Creek. Boise, Idaho.

Idaho Department of Health and Welfare, Division of Environmental Quality (IDHW-DEQ). 2009. South Fork of the Palouse River Total Daily Maximum Load: Implementation Plan for Agriculture. Prepared by Idaho Soil Conservation Commission and Latah Soil Water Conservation District. 54p.

Idaho Soil Conservation Commission (ISCC). 2009. South Fork Palouse River TMDL Implementation Plan for Agriculture. Prepared for Idaho Department of Environmental Quality. In Cooperation with: Latah Soil Water Conservation District and South Fork Palouse River Watershed Advisory Group.

Kuttel, M. Jr. 2002. Salmonid Habitat Limiting Factors Water Resource Inventory Areas 33 (Lower) & 35 (Middle) Snake Watersheds, & Lower Six Miles of the Palouse River. Washington State Conservation Commission. Olympia, WA. pp. 223.

Latah Soil and Water Conservation District (SWCD). 1986. Paradise Creek Idaho Agricultural Water Quality Program Pre-Application.

Latah Soil and Water Conservation District (SWCD). 1981. Paradise Creek Idaho Agricultural Water Quality Program Pre-Application.

Lupher. 1936. Fish in the Latah Formation of Idaho. Science, New Series), 85(2196): page 120.

Mathieu, N. and J. Carroll. 2006. South Fork Palouse River Fecal Coliform Bacteria TMDL Quality Assurance Project Plan. Washington State Department of Ecology, Environmental Assessment Program. Pub. No. 06-03-105. 53p.

Maughan, O.E., E.E. Edmundson, A.E. Farris, and R.L. Wallace. 1980. *A Comparison of Fish Species above and below Palouse Falls, Palouse River, Washington-Idaho*. Northwest Science. Vol. 54. No. 1. pp. 5-8.

Mendel, G., J. Trump, C. Fulton, and M. Gembala. 2004. Brief Assessment of Salmonids and Stream Habitat Conditions in Snake River Tributaries of Asotin, Whitman and Garfield Counties in Washington March 2001-June 2003 - Final Report. Washington Department of Fish and

Wildlife Fish Program-Fish Management Division. Prepared for Salmon Recovery Funding Board, Olympia, WA. 173p.

Mendel, G., C. Fulton, and R. Weldert. 2003. An Investigation into the Migratory Behavior of Bull Trout (*Salvelinus confluentus*) in the Touchet River Basin. Washington State Department of Fish and Wildlife-Fish Management Division. Prepared for WDFW Olympia, WA and USFWS Spokane, WA. 27p.

Merigliano, M. F. and P. Lesica. 1998. *The native status of reed canarygrass (Phalaris arundinacea L.) in the inland Northwest, U.S.A.* Natural Areas Journal 18:223-230.

Munn, M.D., R.W. Black, S. J. Gruber. 2002. *Response of Benthic Algae to Environmental Gradients in an Agriculturally Dominated Landscape*. Journal of the North American Benthological Society. Vol. 21, No. 2. pp. 221-237.

Nassar, E.G. and K.L. Walters. 1975. Water Supply Bulletin 39, Water in the Palouse River Basin, Washington. Prepared in Cooperation with the USGS. 258p.

Olsen, A.R., B.D. Snyder, L.L. Stahl, and J.L. Pitt. 2009. Survey Design for Lakes and Reservoirs in the United States to Assess Contaminants in Fish Tissue. *Environmental Monitoring and Assessment* 150:91-100.ODEQ (Oregon Department of Environmental Quality). 2004. *Watersheds Assessment Mode of Operations Manual.* (ODEQ MoM). Oregon Department of Environmental Quality, Portland, OR.

Parkhurst, Z.E. 1950. Survey of the Columbia River and its Tributaries Part 6: Area V Snake River System from the Mouth to the Grand Ronde River. USFWS Special Scientific Report No. 30.

PBAC (Palouse Basin Aquifer Committee). 2009. Palouse Ground Water Basin Water Use Report. University of Idaho, Moscow, ID. 20p.

Pelletier, G. J. 1995. South Fork Palouse River Total Maximum Daily Load of Ammonia, Addendum to 1993 Report. Washington State Department of Ecology, Environmental Investigations and Laboratory Services Program, Watershed Assessments Section. Pub. No. 93-329. 16p.

Pelletier, G. J. 1993. South Fork Palouse River Total Maximum Daily Load of Ammonia. Washington State Department of Ecology, Environmental Investigations and Laboratory Services Program, Watershed Assessments Section. Pub. No. 93-e48. 95p.

Rabe, F., L. Cazier, A. Thombrough, 3. Shuman, C. Luce, and 3. Bell. 1993. Habitat Assessment and Bioassessment of Paradise Creek and South Fork of the Palouse River at Selected Sites in Idaho and Washington: 1992-1993. Aquatics Unlimited, Moscow, Idaho. Ray, V. 1975. Visitors Facilities Cultural Report. Chief Joseph Dam. Manuscript on file at the Colville Confederated Tribes, History and Archaeology Department, Nespelem.

Ringe, L.D. 1968. Geomorphology of the Palouse Hills, Southeastern Washington. Geological Society of America, Special Paper Vol. 115: 185 1968 (Abstract).

Russell, I.C., 1897. A geological reconnaissance in southeastern Washington. USGS Water-Supply Paper 4.

Scheid, V.E. 1937. Fish in the Latah Formation. Science. Vol. 85, No. 2196. p. 120.

Scholz, A.T., B.Z. Lang, A.R. Black, H.J. McLellan, and R.L. Peck. 2003. *Brook Stickleback Established in Eastern Washington*. Northwest Science. Vol. 70. No. 2. pp. 110-115.

Servheen, G., P. Morgan, B. Weddell, P. Gessler, and P. McDaniel. 2002. Wetlands of the Palouse Prairie: Historical Extent and Plant Composition. Prepared for Environmental Protection Agency, Idaho Operations Office, Boise, ID. 58p.

SWWRC. 1994. Water Quality Monitoring on the Idaho Section of Paradise Creek, August 1994-November 1995, Final Report. Prepared by J.D. Schnabel and G.A. Wilson. State of Washington Water Research Center, Washington State University, Pullman, WA. 44p.

USDA. 1978. Palouse cooperative river basin study. USDA Soil Conservation Service. US Government Printing Office. Washington D.C. 182 p.

USGS (U.S. Geological Survey). 1921. Water Supply Bulletin No. 1 Monthly and Yearly Summaries of Hydrometric Data in the State of Washington: 1878-1920. State of Washington, Department of Conservation and Development, Division of Water Resources. Olympia, Washington. 140p.

USGS (U.S. Geological Survey). 1962. Water Supply Bulletin No. 15 Monthly and Yearly Summaries of Hydrographic Data in the State of Washington: September 1953 to September 1960. State of Washington, Department of Conservation. Olympia, Washington. 385p.

USGS. 1975. Water in the Palouse River Basin, Washington. Water-Supply Bulletin 39. Prepared by E.G. Nassar and K.L. Walters. In Cooperation with Washington Department of Ecology. 258p.

Washington State Department of Ecology. 2009 (draft). Status and Trends Monitoring for Watershed Health & Salmon Recovery: Field Data Collection Protocol (Wadeable Streams). Environmental Assessment Program, Washington State Department of Ecology, Olympia, WA.

Watershed Sciences, Inc. 2006. Airborne Thermal Infrared Remote Sensing Palouse River Basin, WA/ID. Submitted to Washington Department of Ecology, Environmental Assessment Program, and City of Moscow Water, Water Department. Weddell, B.J. Ph.D. Date Unknown. Historical Vegetation of Seasonally Moist Depressions in the South Fork of the Palouse River Watershed. Draba Consulting. email: <u>weddellb@pullman.com</u>

Wertz, L.B. 1993. Beneficial Use Attainability Assessment Workplan: Paradise Creek, Latah County, Idaho. Prepared by the Idaho Department of Health and Welfare Division of Environmental Quality.

Wisseman, B. 1993. Benthic Invertebrate Bioassessment. Aquatic Biology Associates. Corvallis, OR.

APPENDIX A. PROFESSIONAL CONTACT LIST

Professional Contact	Response
1. Allan T. Scholz (Eastern Washington University)	No response following repeated effort to contact.
Fisheries Professor (509-359-	
6397) ascholz@ewu.edu	
2. Bruce Z. Lang (Eastern	No response following effort to contact.
Washington University)	
Professor Emeritus (509-828-	
3204) <u>blang@aimcomm.com</u>	45
3. Mark Grandstaff (WDFW;	Left a voicemail message October 19 th , 2010 and
Regional habitat Biologist)	requested available knowledge and sources of
(509-527-4141) Mark Crandataff@dfw.wa.cov	information for the SF Palouse R (and nearby
Mark.Grandstall@dlw.wa.gov	aquatic resource areas) fisheries, aquatic habitat,
4 Angelo Vitelli (Fisheries	Spoke with Mr. Vitelli on October 19 th 2010
Program Manager-Coeur	regarding work completed in and around the SF
d'Alene Tribe) 208-686-6307	Palouse R drainage. The Coeur d'Alene Tribe has
(CDA Tribe does not have any	not conducted any work in this drainage and
information pertaining to the SF	suggested Tt tries with the Nez Perce Tribe.
Palouse or surrounding	
drainages)	
5. Jay Hesse (Director of	Left a message October 19 ^{ad} , 2010 and requested
Biological Services-Nez Perce	available knowledge and sources of information
1100 208-845-7145 EXt. 1	for the SF Palouse R (and hearby aquatic resource areas) fisheries, aquatic habitat, and
jayn@nexperce.org	water quality
	Returned call on Thursday October 21 st , 2010
Prepared by:	and advised that one report was generated that
Ken Clark	assessed water quality and habitat characteristics
Water Quality Analyst	at select locations in the South Fork Palouse
Idaho Association of Soil Conservation	River drainage. The following was the note Ken
Districts	Clark of the Nez Perce Tribe provided Mr.
Moscow, Idaho 83843	Hesse:
Technical Popults Summery KPC	I conducted a water quality monitoring project
PR_02	on the SE Palouse river back in 2002. I'll attach
Tributaries of the Palouse River	the report for you. In a nutshell, there was a
Monitoring Report 2002	tremendous problem with excessive nutrients in
8 1 1 1	the South Fork, as well as habitat alteration, due
A Water Quality Sampling Project for the	to channelization of the stream. Episodic spikes
303 (d) listed Tributaries of the Palouse	in sediment loads were seen during spring runoff
River	and heavy precipitation events, as one would
	expect in a sand/silt dominated system like the
	SF Palouse. "The honoficial wave for the SE Delayer Direct
	are: Cold Water Aquatic Life Salmonid
	Spawning and Secondary Contact Recreation
	So, water temperatures are never to exceed $22 ^{\circ}\text{C}$
	as a daily maximum, or 19 °C as a daily
Districts Moscow, Idaho 83843 September 2003 Technical Results Summary KPC- PR-02 Tributaries of the Palouse River Monitoring Report 2002 A Water Quality Sampling Project for the 303 (d) listed Tributaries of the Palouse River	Clark of the Nez Perce Tribe provided Mr. Hesse: I conducted a water quality monitoring project on the SF Palouse river back in 2002. I'll attach the report for you. In a nutshell, there was a tremendous problem with excessive nutrients in the South Fork, as well as habitat alteration, due to channelization of the stream. Episodic spikes in sediment loads were seen during spring runoff and heavy precipitation events, as one would expect in a sand/silt dominated system like the SF Palouse. "The beneficial uses for the SF Palouse River are: Cold Water Aquatic Life, Salmonid Spawning and Secondary Contact Recreation. So, water temperatures are never to exceed 22 °C as a daily maximum, or 19 °C as a daily

average, according to the CWAL designation.
Brook trout were the salmonid species identified
in the South Fork by the IDEQ, and the more
restrictive salmonid spawning criteria of 9°C as
a daily average and 13°C as a daily maximum
apply from September 15 th to July 1 st . I know
IDEQ has done some BURP surveys in that
stream, and they would have shocked fish as part
of their surveys. Cindy Barrett, in Lewiston,
would be a good person to contact for that data.
I'm not really sure how your stream designations
are organized, but if there is a cool water vs. cold
water designation debate going on, I would
probably lean towards the cold water
designation."

APPENDIX B. TECHNICAL MEMORANDUM: APPROACH AND FINDINGS OF THE LITERATURE REVIEW

TECHNICAL MEMORANDUM: APPROACH AND FINDINGS OF THE LITERATURE REVIEW

INTRODUCTION

a. Project setting

The Palouse region in Washington State occupies a large portion of the southeastern landscape. This region is characterized by asymmetric, steep and rolling hills with a deep tawny silt layer with underlying basalt and weathered basalt. Initial and extensive investigation of the unique topography and soil (Loess) origin of this region dates back to Russell (1897). Further investigation by Ring (1968) compiled past research and proposed origins of the loess soil that comprises the "Palouse Hills" as well as a drainage basin analysis.

Drainage patterns (mainstem and tributaries of the Palouse River) are influenced by convergence of several characteristics:

- Topography
- Soils
- Underlying geology
- Climate patterns, and
- Groundwater-Surface water interaction.

The drainage pattern and hydrologic characteristics of stream surface flow are discussed in detail by Russell (1987) with several key points important for determining expectations for water quantity. The occurrence of perennial flow and intermittent flowing streams are explained by factors consistently associated with stream flow type. Those streams incised into bedrock channels are perennial streams whereas those incised into loess are associated with intermittent flow during portions of the year. Records indicate that surface flow had decreased in the Palouse River (at Hooper) by approximately 25 percent when comparing observations from 1898 and 1954 during the same high flow months (USGS 1921; USGS 1962). Either climatic patterns have changed in the 40 year time period and/or water consumption had changed that accounts for some of the stream channel dewatering.

Development of the area by European settlers began after 1870 and consisted of a growing agricultural economy based primarily in fruit crops. The fruit crops were rapidly replaced over the next 20 years and dominated by wheat crops, yielding higher monetary returns than the first agricultural crops that were planted in the region. The native bunchgrasses were cleared rapidly and replaced by cultivated, non-native wheat

crops that occupied at least half of Whitman County by 1990. The native bunchgrass prairie existed as isolated tracts by 1990 in areas less favorable for farming throughout the Palouse region (Black *et al.* 2002). Less than 1% of all farming is currently irrigated as soil conditions and timing of precipitation promotes dryland farming (USGS 1975).

b. Regulatory issues and water quality studies

Recent TMDL (Total Maximum Daily Load) water quality studies addressed bacteriological impairments throughout the South Fork Palouse River drainage (Ecology 2009). These impairments may originate from a variety of sources that indirectly and directly influence characteristics of the stream channel and riparian area. These influences include: livestock grazing, wildlife (especially ubiquitous populations), land use practice changes, and Wastewater Treatment Plants (e.g., Moscow, Pullman, and Albion). Although bacteriological contamination may not directly affect sensitive fish species, the occurrence of high concentration of this indicator reveals land use activities that alter stream channel characteristics and refugia important for survival of aquatic life.

Other water quality impairments identified in segments of the South Fork Palouse River are: ammonia (Pelletier 1993), dissolved oxygen and pH (Carroll and Mathieu 2006), and temperature (Bilhimer, Carroll, and Sinclair 2006). Each of these water quality parameters that have exceeded water quality criteria in segments of this drainage directly affect life stages of sensitive fish species, particularly salmonids and char. The basis for the water quality criteria considered water quality requirements for salmonid and char species and requirements for survival of life stages in developing current criteria for these parameters (Ecology 2006). Water quality requirements for fish species were considered the most rigorous and, therefore, protective of all forms of aquatic life that are considered under WAC 173-201A (Water Quality Standards for the State of Washington).

December 17, 2010

Earlier water quality studies informed on the type of pollutants and severity of contamination at locations throughout the Palouse River watershed (Clark 2003). Among the water quality parameters previously mentioned as primary pollutants, sediments, phosphorus, and bacteriological contamination were the most prevalent. The longevity of human activity (beginning in the late 1800's) in the basin has altered

landscape vegetation characteristics that have compounded pollution problems through de-stabilization of

South Fork 11).

soil integrity, introduction of large quantities of nutrients into soils, that eventually erode to nearby stream channels (Figure 1). The effects on stream water quality are observed in several reports where eutrophication of aquatic ecosystems has affected dissolved oxygen concentrations and then pH conditions (Figure 2). There is some question, however, about the role riparian vegetation may have played historically and if the greater contribution to temperature mediation in streams of this basin during the warm months may have been migration of groundwater to streams and surface water

along the lower r (Site SFPR- exchange to groundwater in select reaches. The 1998 §303 (d) list for Idaho focuses on impacts related to flow alteration, habitat alteration, nutrients, sediment, and temperature. State of Idaho listings of reasons for water quality impairment are observed in the State of Washington portion of the drainage.

The landscape in the South Fork Palouse drainage was dominated by fescue/bunchgrass circa 1900 (Quigley and Arbelbide 1997) and has since been replaced by cropland, hay, and pasture with some forbs/annual grass

mix. These changes from an uncultivated landscape to a setting that is now heavily cultivated has raised concerns about cumulative impact to sensitive surface water resources.

Tetra Tech, Inc. Surface Water Group 1420 Fifth Avenue, Suite 550 Seattle, Washington 98101

Groundwater contribution to surface water streams is particularly significant during low flow portions of the year. The development of population centers like Pullman, WA has depleted groundwater levels and has permanently affected the presence of artesian wells that were well-known in the area. Groundwater recharge does not occur rapidly enough through surface water streams, lakes, or precipitation in order to replace as rapidly as withdrawal from select areas (USGS 1975). Nearly every town and farmstead uses springs or wells as a source for drinking water and limited irrigation. The location, timing during the year, and volume of groundwater used influences the surface water available in parts of the South Fork Palouse River drainage.

c. Purpose for the Literature Review

Currently, results from TMDL modeling demonstrate degraded water quality conditions in the South Fork Palouse River drainage with sources related to riparian and instream habitat degradation as well as heavily used groundwater resources. Water Quality criteria for the State of Washington (WAC 173-201A) declares the South Fork Palouse River and tributaries a salmonid spawning and rearing aquatic resource. This designation establishes a 7 day average daily maximum of 17.5 °C. A thorough literature review had been conducted in order to determine if present expectations (as defined in WAC 173-201A) are achievable based on historic information describing biological communities, changes to physical habitat, and available information describing water quality conditions. The biological descriptions may provide the greatest evidence for historic conditions derived from autecological characteristics of biological communities and tolerance to environmental gradients.

d. Objectives of the effort

The objectives of this project focus on generating answers to the following questions:

Question 1: What were the historic aquatic-life uses in the waterbody:

- What fish, amphibian, and invertebrate species were historically resident in the watershed?
- What other notable historic biological information is available pertaining to aquatic life in the waterbody?

Question 2: What are the current aquatic-life uses in the waterbody:

- What fish, amphibian, and invertebrate species currently reside in the watershed?
- When are the fish, amphibian, and invertebrate species present?
- Do the fish have migration patterns and do they utilize thermal (or other) refugia in the watershed? Where are these refugia located and when are they utilized?

- Question 3: What are aquatic life uses that would most likely occur within a range of estimated natural conditions in the waterbody (Ecology will provide a description for the range of estimated natural conditions, both currently and historically):
 - What aquatic habitats could have occurred within the range of estimated natural conditions?
 - What is a reasonable estimation of the biota assemblage that could be found in this system if the water quality and habitat were improved to within the range of estimated natural conditions?
 - What are the effects of non-native riparian vegetation on the current aquatic community (i.e. reed canary grass compared to native riparian vegetation)?

Summarization of information gathered from existing knowledge and by generating data describing current conditions attempted to describe environmental conditions during 3 important periods related to the above questions and are as follows:

- Pre-European conditions (Question 1; habitat and biotic conditions prior to arrival of original settlers).
- Current conditions (Question 2; field data from this study and more recent surveys),
- Trends from 1975-Current (Question 3; a reflection of environmental change over a 35 year period).

These 3 periods along a timeline, beginning with Pre-European settlement, were compared in order to determine the extent of change in biotic communities that may have directly and indirectly been influenced by arrival of Europeans and effects on aquatic resources from the development of the regional economy.

METHODS

b. Strategy for initiating the review

The literature survey was completed using multiple approaches that could yield primary literature necessary to adequately address the objectives in this study. Three main sources for information were used to locate literature eventually used in constructing this document:

- Web-based survey (Google[©]),
- Library search (Eastern Washington University, Washington State University, and University of Idaho), and
- Professional Interviews (by telephone, in-person, or by email exchange).

The web based survey and library search were methods that were more consistent in approach and expected results. Search words and intensity of literature discovery were uniform between the two methods. The professional interviews differed among the respondents and this was due to the type of information each had to offer and the level of experience within the organization.

c. Literature Survey

Literature surveys were extracted from both the web-based search and from the library search. Literature was collected in electronic form, where available, and stored in sub-folders that reflected themes for environmental information:

- Benthic Macroinvertebrates (BMI)
- Dams
- Entomology
- Fisheries
- Land Use
- Literature from the Palouse Bibliography
- Periphyton
- Physical Habitat
- Remote Imagery
- TMDL Regulatory
- Use Attainability Analysis (UAA)
- Vegetation
- Water Quality
- Water Quantity
- Water Supply Bulletins
- Watersheds
- Wetlands

Tetra Tech, Inc. Surface Water Group 1420 Fifth Avenue, Suite 550 Seattle, Washington 98101

General categories that were related to any of these environmental themes were also used as key search terminology in locating available technical literature.

d. Database review

Information from existing databases like Ecology's EIM (Environmental Information Management) system was reviewed for relevant data. EIM is a clearinghouse of environmental data stored and annotated by Ecology and offers access via a web link: <u>http://www.ecy.wa.gov/eim/</u>

Additional databases were reviewed for useful information through the Natural Resources Information Portal:

http://www.swim.wa.gov/

Information was reviewed for references to reports and/or literature relevant to objectives of this study. Reports generated by the Washington Department of Ecology related to the Palouse River drainage and surrounding region were located through online access to publications by the Water Quality Program and the Environmental Assessment Program. The Idaho Department of Health and Welfare-Division of Environmental Quality as well as the Nez Perce Tribe generated useful documents that described bases of information used to develop regulatory tools.

e. Personal Communications

Several staff from academic institutions and tribes were contacted for information generated in the Palouse River drainage. Detailed information regarding these contacts is found in Appendix A: Professional Contacts List. Relatively little information was contributed from these conversations and through attempts to contact environmental professionals listed in the table.

Fishery Biologists from the Coeur d'Alene and Nez Perce Tribes stated that very little focus had been placed on resource management in the Palouse River drainage. The Nez Perce contact was able to locate a single document that reported on recent water quality conditions from several reaches in the State of Idaho. Results of this study identified primary pollution problems as: sediment, phosphorus, and bacteriological contamination (Clark 2003). The eroding soils both instream and from along banks carries high concentrations of adsorbed phosphorus from agricultural applications. The movement of the soils (with associated phosphorus) occurs with precipitation or rain-on-snow runoff and erosion of river banks during high flows. The phosphorus aggregates in increasing quantities as adhered to soils and influences trophic condition in nearby streams.

f. Compilation of the information and results

Organization of the summary of results section was partitioned by three time periods as described in the objectives of this literature survey. The time periods in which available and relevant literature was organized further partitioned these summaries as: physical habitat, water quality, and biological conditions. The time periods were intended to reflect typical periods during which significant changes occurred in land use, economic development, or availability of data from scientific investigations. The following were time periods in which these results were categorized:

- Pre-European
- Trends from 1975 to Current
- Current Conditions

Several types of environmental information were useful in examining how changes in one or more conditions during a time period might have influenced biological potential (and migratory patterns) throughout the South Fork Palouse River drainage. Summaries of information that informed on physical, chemical, and biological gradients were prepared for transfer to the Final Technical Report and interpretation of limitations (e.g., water quality factors or physical habitat availability) to biological uses in select reaches of the South Fork Palouse River drainage. Scientific references were included in these summaries as well as additional references not cited, but evaluated for utility in this project.

g. Data Presentation

Data summaries were presented as text and in tabular or graphical form. Any tables or graphs that appear in this report were copied and included from the original source (cited) to preserve integrity of the information content. In some cases, narrative provides conclusion for the observations made from individual studies. All of this information is considered for inclusion in the Final Technical Report and reveals the fullest extent of information currently available. Some of the summaries are literature compilations themselves and report on the work of many more scientific studies.

SUMMARY OF RESULTS

a. Pre-European

<u>Physical Habitat</u>

Historically, fall chinook (*Oncorhynchus tshawytscha*) spawning in the Washington portion of the Snake River was concentrated near the mouths of the Palouse and Clearwater Rivers (Fulton 1968, cited in Dauble 2000). This portion of the Palouse River flows through a deep canyon cut through the Columbia River Basalts during the torrential Spokane Floods. Prior to these floods, the Palouse River flowed down the now abandoned Washtucna Coulee, joined Esquatzel Coulee at Connell, and then joined the Columbia River near Pasco. The floods spilled over the south wall of the historic Palouse River valley and headed for the Snake River where the waters poured over the lip of the Snake River Canyon. This was likely the original location of Palouse Falls. Successive flood flows produced immense whirlpools that tore large blocks of basalt from the face of the falls, causing the falls to erode upstream about six miles to its current location. The Palouse Falls at approximately 185 feet is a complete barrier to anadromous and non-anadromous fish passage. Anadromous fish and bull trout are not present in the headwaters of the Palouse River within Washington (Kuttel 2002).

In the nineteenth century, perennial caespitose grasses, often associated with forbs and low shrubs, dominated uplands, but parts of the landscape where surface water accumulated in winter and spring developed distinctive vegetation. Dense stands of common camas (Camassia quamash), an important food plant for the region's native people, were the most obvious feature of this association (Weddell unknown).

Weddell (date unknown) states that it is interesting to note that reed canarygrass (Phalaris arundinacea), which now forms virtually monolithic stands in stream channels and floodplains throughout the Palouse Prairie, was not collected in the study area prior to 1917 and is not listed by Piper and Beattie as occurring in the Palouse Region prior to 1901. This plant occurred in some parts of the West prior to white settlement, but the highly invasive form that now dominates streams and streamside environments in the Intermountain West may be descended from a non-native cultivar or a hybrid between a cultivar and a native form (Merigliano and Lesica 1998). The earliest Latah or Whitman County specimen in the Stillinger or Ownbey herbaria was collected by R. Daubenmire in 1938 in a "muddy roadside ditch" 5 mi north of Moscow (WSU Ownbey Herbarium Spec. No. 261001).

<u>Water Quality</u>

No information available.

Biological Conditions

The Palouse Falls, at approximately 185 feet, is a complete barrier to anadromous and non-anadromous fish passage. Anadromous fish and bull trout are not present in the headwaters of the Palouse River within Washington (Kuttel 2002).

According to fishery documents, the Palouse River was, at least historically not used by spawning salmon (Fulton 1968). Parkhurst (1950) did not survey the Palouse River during his fisheries study and historic overview of Snake River Basin anadromous fishes. He noted that a high falls (Palouse Falls) located about 10 km above the mouth "renders the stream inaccessible to migratory fish". Ethnographic records show that salmon fishing was extremely productive at the confluence of the Palouse and Snake Rivers (Ray 1975, reference from Butler 2004). Lewis and Clark and later explorers describe a very large village at the mouth of the Palouse River. Ross Cox, who spent time in the village around 1812, noted that in early August, people there were engaged in catching and drying salmon in large numbers (Ray 1975, reference form Butler 2004). Historic documents also show fishing camps and villages along the Palouse River itself (Ray 1975). Ray refers to two such locales in particular: A'patap, which was located at the foot of the Palouse Falls, and Claxo'pa, about four miles above the mouth. Unfortunately, the documents do not indicate whether the Native American fishery along the Palouse River targeted resident freshwater fish or anadromous salmon and trout (Butler 2004).

The falls have been a barrier to migratory salmonids at least since the late Pleistocene and Holocene periods, thus it is clear that the Palouse River itself was not a passageway for fish migrating to headwater areas to spawn. It is possible of course that the Palouse River channel below the falls was used by salmon for spawning and thus a fishery might have developed to target such fishes. Pre-dam records for fish distribution lead to the conclusion that the Palouse River never supported large salmonid populations (Butler 2004).

The historic fish assemblage in the Palouse River Subbasin prior to European settlement consisted primarily of anadromous and resident salmonids, cyprinids, and catastomids in the lower Palouse River below Palouse Falls, and a diverse assemblage of fish species, primarily composed of cyprinids and catastomids above the falls (Cook 2001). The anadromous salmonid fish species noted included Chinook salmon Oncorhynchus tshawytscha and steelhead O. mykiss (Parkhurst 1950). Although there is a general understanding of what species now exist in the sub-basin, there is a lack of knowledge on what native fish species existed within the subbasin, prior to European immigrant settlement in the area, which are no longer present (Cook 2001).

Wertz (1993) quotes a longtime resident as stating that Paradise Creek supported a cutthroat trout population up until the 1890's (Doke & Hashmi 1994).

b. 1975 to Current

<u>Physical Habitat</u>

The Palouse Falls at approximately 185 feet is a complete barrier to anadromous and non-anadromous fish passage. Anadromous fish and bull trout are not present in the headwaters of the Palouse River within Washington (Kuttel 2002).

Palouse Falls blocks all fish. There is no record of use by salmon and/or trout in the lower 10 km of the river (downstream of the falls) (Fulton 1970).

The South Fork and its main tributaries in Idaho (Crumarine Creek, Gnat Creek and Howard Creek) originate from springs within the forested terrain of Moscow Mountain. The South Fork Palouse River experiences low flows during the late summer and early fall months and high flows in the spring and early summer months. Most of the wetlands and flood plains in the Palouse have been drained or eliminated by modern land use, urbanization, and transportation infrastructure affecting channel sinuosity and diversity. These areas retained water during high flow periods and released water during the lower flow periods. Without these water storage areas, peak flows are higher and for a shorter period of time, creating instream channel erosion, flooding, and deeply incised channels (IDEQ 2007).

The Palouse River originates in the mountains of western Idaho and flows 262 km, through forest, dryland farming (non-irrigated), and barren rangelands before discharging to the Snake River; it drains 8500 km². Dryland farming, mainly wheat, constitutes 75% of land use in the Palouse River Basin, although grazing and urbanization affect water quality in localized areas. The South Fork of the Palouse River region is commonly considered a dryland farming (81-91%) area with low runoff into streams, but a high percentage of the stream flow is composed of sewage treatment effluent with excessively high nutrient loading from Moscow, Idaho, and Pullman, Washington (Greene et al 1994; Munn et al 2002).

Erosion is occurring along most stream banks of the Idaho portion of the South Fork Palouse River that are adjacent to cropland and pastureland fields because of the lack of woody vegetation and rhizomatus herbaceous species. Livestock activity often promotes stream bank deterioration, as well as the removal of vegetation. This lack of root mass allows for bank sloughing which contributes significant amounts of sediment into SFPR

drainages. Many portions of the stream have been channelized or have had woody vegetation removed when cropland fields were established. Herbicide spray and tillage operations, as well as grazing activities, have prevented the reestablishment of woody species. While there are some remnant areas; much of the historically diverse and multi-layered vegetation along the stream is missing (ISCC 2009).

Table 1 below was taken from IDHW-DEQ 1994 and summarizes habitat scores for various stations on Paradise Creek. The qualitative habitat quality for a stream segment is rated as excellent (101-125), good (67-100), fair (33-66), or poor (0-32). Schwartz Creek was the reference stream in the study, Rabe et al 1993.

	Mt.	View	White	&Troy	6 ^m 8	2 Dea	akin	Blw. V	WWTP	Schw	artz
Parameter	Oct	Feb	Oct	Feb	Oct	Feb	Oct	Oct	Feb	Oct [*] 91	Feb'92
Bottom substrate	3	2	3	3	6	4	2	10	3	15	16
Embeddedness	2	2	2	2	7	4	2	12	6	11	14
Channel shape	2	2	5	5	2	2	2	12	12	13	13
Riffle/bend ratio	1	1	1	1	2	2	2	4	4	11	11
Channel alteration	2	2	2	2	2	2	1	5	5	15	15
Lower bank stability	3	3	5	5	5	5	4	6	6	8	8
Bank vegetation protection	4	4	6	6	6	6	6	8	8	10	10
Canopy cover	2	0	7	5	7	5	7	6	4	8	6
Width of riparian	3	0	4	2	4	2	4	8	3	8	8
TOTAL SCORE	22	16	35	31	41	32	30	69	49	99	101

Table 1. Habitat Assessment Scores of Paradise Creek October 1992 and February 1993

¹October 1993

The Palouse River and its tributaries flow freely to the Snake River with no major man made impoundments (USDA 1978). There are a few minor impoundments for irrigation purposes, mostly located on small tributaries. There have been major efforts historically to straighten and keep stream channels clear of vegetation to assist with drainage and control flooding on the tributaries of the Palouse River. In some cases dikes have been installed along streams to reduce flooding, these have disconnected the streams from the riparian and upland zones. Tiling has been used to improve the drainage of wetter areas to open the ground for agricultural purposes; the tiling normally is outletted directly into a stream. Livestock grazing has altered stream channel stability. Farm practices and the removal of wetlands have dramatically reduced the upland water storage capacity of the Palouse Basin. Forest grounds in Idaho have been historically clear-cut reducing water storage potential. Also there has been an increase in the amount of impervious surfaces (primarily urban areas). The Palouse River as it flows

through Colfax, Washington, is contained in a concrete aqueduct. These factors have contributed to a 'spiky' hydrologic curve, and several tributary streams becoming intermittent in the summer months. When there is a precipitation event the waters tend to enter the streams quickly and drain to the Snake River quickly (Cook 2001).

Most of the South Fork's subbasin riparian areas have been altered by land use, and the remaining riparian habitat is limited and of poor quality. Many small intermittent streams have been converted to drainage ditches, and the riparian vegetation removed. Tillage often occurs up to the edge of the ditch or property, leaving a limited buffer between the waterway and the cropland. Elevated water temperatures in the summer and increased nutrient and sediment loads can adversely affect aquatic habitat (HDR 2007).

The alteration of the landscape in the basin is reflected in changes in flow patterns and water quality. Changes in flow patterns include increased peak flows in winter and spring storm events, and lower sustained summer base flows. The increase in peak flows is partly caused by loss of storage within the riparian zone, leading to a reduction in infiltration, which in turn, lowers the sustained summer base flows. Several significant flood events have been documented in the City of Pullman. The most recent severe flood occurred in 1996, triggered by heavy rainfall on snow on frozen ground. During low flow summer periods, there is no sustained summer base flow in the South Fork. Downstream from Pullman, the instream summer flow in the South Fork is mainly composed of City of Moscow and City of Pullman wastewater discharges (HDR 2007).

<u>Water Quality</u>

The majority of the creeks and streams, used as collection localities in Griffith's preliminary survey of fish parasites in the Palouse Area (1953), drain into the Palouse River which then empties into the Snake River. The small streams sampled, as well as the Palouse River, have a high turbidity. This may account for the restricted number of fish species (Griffith 1953).

In 2005, the Washington Department of Ecology and the City of Moscow, ID contracted with Watershed Sciences to provide TIR and true color digital imagery on Paradise Creek, and the North and South Forks Palouse River. The data were collected in support of an ongoing temperature TMDL analysis in the basin. The data were acquired on July 30 and 31, 2005 during the mid-afternoon hours (1:00 to 4:00 PM). Results for the South Fork Palouse River are shown in Figure 3 below (Watershed Sciences, Inc. 2006).

Figure 3. Radiant water temperatures were plotted versus river mile for the South Fork Palouse River. River miles were calculated upstream from the confluence of the North Fork Palouse River.

Radiant water temperatures in the South Fork ranged from 17.7°C just downstream of the Paradise Creek confluence to a survey maximum of 26.4°C at river mile 3.3 upstream of the town of Colfax). The TIR survey began at the river mouth and continued upstream to near the headwaters (mile 43.4). However, upstream of river mile 33.2, the South Fork did not have enough visible surface water to obtain accurate temperature samples (Watershed Sciences, Inc. 2006).

Between river mile 33.2 and Paradise Creek, stream temperatures exhibited a general warming trend increasing from ~18.3°C (mile 33.2) to a local maximum of 25.3°C (mile 23.4). Within this general trend, radiant water temperatures exhibited a high degree of spatial variability with rapid, local changes in radiant temperatures. A high degree of local thermal variability is often a characteristic of comparatively warm streams under low flow conditions. In these cases, relatively small sub-surface discharges can have a dramatic influence on bulk water temperatures. The rapid increase in stream temperature at river mile 29.3 suggests some thermal stratification immediately upstream of a small impoundment observed at that location (Watershed Sciences, Inc. 2006).

Between the Paradise Creek confluence and the mouth, radiant water temperatures in the South Fork exhibited considerable local variability within an overall downstream warming trend (Figure 4). A notable increase in longitudinal heating was observed

between river miles 20.8 and 20.0 with radiant water temperatures increasing by ~3.3°C. Inspection of the imagery revealed that this increase occurs downstream of the Pullman waste water treatment plant and that the channel is exposed through this reach (as it is through much of its length). However, no direct mass transfer (i.e. surface or warm water returns) into the river was detected through this reach (Watershed Sciences, Inc. 2006).

Figure 4. Radiant water temperatures were plotted versus river mile for Paradise Creek.

Radiant water temperatures in Paradise Creek ranged from 17.4°C to 22.3°C. The longitudinal profile shows considerable variability between radiant temperature samples. The wetted channel width was relatively small (1 to 5 meters) throughout the entire extent with some reaches having no visible surface water. Radiant temperatures were sampled where surface water was clearly visible and wetted widths were at least 1.5 meters. This resulted in intermittent sampling throughout the surveyed extent. Although the TIR survey covered 18.6 miles, radiant temperature sampling was only possible over the lower 11.4 miles with only 6 images sampled over the Idaho State Line (mile 6.5) (Watershed Sciences, Inc. 2006).

The South Fork Palouse River and several of its tributaries (Paradise Creek, Missouri Flat Creek and Dry Fork Creek) are listed as impaired by fecal coliform bacteria on the Clean Water Act's 303(d) list of impaired water bodies. The streams in this watershed are

required to have a geometric mean of less than 100 colony forming units/100 milliliters (cfu/mL) and not more than 10% of the samples used to calculate the geometric mean can exceed 200 cfu/100mL.

The South Fork Palouse River (Table 2) is on the 303(d) list of impaired waterbodies for high instream temperatures (Bilhimer et al 2006).

Station ID		J	uly (°C)		August (°C)					
	Avg. DMax	Stdev	Max 7DADMax	Date of 7DADMax	Avg. DMax	Stdev	Max 7DADMax	Date of 7DADMax		
34C100 (Paradise Cr)	21.31	0.74	21.67	7/30/2005	20.64	0.95	21.33	8/1/2005		
34B110 (SFPR at Pullman)	20.03	0.67	20.39	7/15/2005	17.83	1.64	20.1	8/1/2005		
34B130 (SFPR blw Sunshine)	21.57	1.13	22.51	7/4/2005	17.62	1.59	20.57	8/1/2005		

 Table 2. 2005 Monthly Summary for Ambient Monitoring Stations.

The South Fork Palouse River has been listed by the state of Washington under Section 303(d) of the Clean Water Act for non-attainment of Washington State dissolved oxygen (DO) and pH criteria. The listings are based on sampling done by the Washington State Department of Ecology in 1987, 1991, and 1994-2001. An additional 303(d) listing was identified within the South Fork Palouse River watershed for ammonia (Carroll et al 2006). Pelletier (1993) showed that the fraction of POTW effluent in the SFPR during critical flow is high. Moscow POTW and Pullman POTW are estimated to comprise the majority of the river flow during July–November for a typical year (Figure 5).

Figure 5. Estimated monthly fraction of POTW effluent in the South Fork Palouse River for a median flow year. Adapted from Pelletier (1993).

In 1980, Idaho's Department of Health and Welfare, Division of Environmental Quality (DEQ) listed Paradise Creek as protected for agricultural water supply and secondary contact recreation designated beneficial uses in the Idaho Water Quality Standards. In October 1993, DEQ staff conducted a Use Attainability Assessment (UAA) for Paradise Creek. The purpose of the UAA was to evaluate the appropriateness of the current designated uses and to determine whether the creek should be protected for any additional uses. It was determined through the UAA that if the water and habitat quality is improved, Paradise Creek would be capable of supporting salmonid spawning and cold water biota. This designation applies to the portion of the creek flowing through Idaho; however above Mountain View Park the creek is intermittent and these uses would apply only when water is present. Secondary contact recreation and agricultural water supply were confirmed as appropriate designated beneficial uses (IDHW-DEQ 1994).

In 1979, DEQ identified the South Fork of the Palouse River and Paradise Creek as having severe pollution problems due to erosion on dryland farming ground (IDHW-DEQ 1981). A water quality survey was performed which determined that the concentration of sediment and associated pollutants depends on the timing and magnitude of runoff. During high flows the concentration of suspended sediment ranged 1,000-3,000 mg/l, fecal coliform numbers increased downstream and exceeded Idaho water quality standards for secondary contact recreation. Paradise Creek had an overall water quality

rating of 99 on a scale of 0-100, with zero being pristine waters and 100 being highly degraded. The survey also concluded that with respect to water quality, most of the surveyed agricultural areas within the Palouse drainage would be considered critical. Due to the severe impacts that agriculture has on Paradise Creek, the Latah Soil and Water Conservation District conducted a planning project to implement best management practices (BMPs) in the Paradise Creek watershed through the Idaho Agricultural Water Quality Program. The District submitted a grant application for implementation in 1981 and 1986, it was rejected both years. (Latah SWCD 1981, 1986) (IDHW-DEQ 1994).

Idaho DEQ designated Mountain View Park as the point where Paradise Creek becomes a perennial stream. Historically, this area was a wetland and water is almost always present during the low flow periods. Upstream from this point the creek is intermittent except during spring runoff. Paradise Creek is located along the western edge of Mountain View Park. In this section the creek is channelized, has little canopy cover, and the bottom substrate is highly embedded. For these reasons this site is generally considered as a poor habitat for fish. The water quality is capable of supporting cold water biota; water temperatures are below 20°C and only once was the dissolved oxygen level measured to be below the minimum requirement (6 mg/L) for cold water biota as defined in t he Idaho Water Quality Standards (IDHW-DEQ 1994). Table 3 below also from IDHW-DEQ 1994.

Table 3. Mountain View Park Water Quality Data¹.

December 17, 2010

Parameter	Winter Values ²	Summer Values ³
Temperature (°C)	0 - 5.5	6.9 - 16.0
рН	6.8 - 7.7	6.9 - 7.6
Dissolved Oxygen (mg/L)	7.0 - 13.2	3.9 - 11.8
Conductivity	127 - 218	37 - 385
Alkalinity (mg/L as CaCO ₃)	27 - 187	40 - 203
Suspended Solids (mg/L)	0.8 - 286.7	4.5 - 112.7
Total Nitrogen (mg/L)	2.27 - 13.87	1.37 - 3.24
NH ₃ (mg/L)	0.02 - 0.09	< 0.01 - 0.04
NO ₃ (mg/L)	0.75 - 12.45	1.21 - 2.71
NO ₂ (mg/L)	< 0.01 - 0.05	0.03 - 0.04
Total Phosphorus (µg/L)	75 - 388	61 - 350
Fecal Coliforms (CFU/100 ml)	<4 - 152	4 - 433
Fecal Strep (CFU/100 ml)	10 - >6000	42 - 1400
Flow (CFS)	0.05 - 27.49	0.03 - 28.76

¹ Collected by the Washington Water Research Center ²November-April, 8 samples

³May-October, 6 samples

Tables 4 and 5 below are also from IDHW-DEQ 1994 and summarize water quality information from other stations on Paradise Creek.

Parameter	Winter Values ²	Summer Values ³
Temperature (°C)	0 - 5.2	6.9 - 18.0
рН	6.8 - 7.6	7.2 - 8.6
Dissolved Oxygen (mg/L)	3.2 - 12,8	2.6 - 13.0
Conductivity	166 - 772	153 - 459
Alkalinity (mg/L as CaCO ₃)	32 - 189	50 - 169
Suspended Solids (mg/L)	4.0 - 28.6	2.5 - 56.7
Total Nitrogen (mg/L)	0.76 - 13.25	0.64 - 3.24
NH ₃ (mg/L)	< 0.01 - 0.11	0.02 - 0.06
NO ₃ (mg/L)	2.73 - 11.46	0.23 - 2.47
NO ₂ (mg/L)	< 0.01 - 0.04	0.01 - 0.04
Total Phosphorus (µg/L)	18 - 312	100 - 396
Fecal Coliforms (CFU/100 ml)	6 - >967	8 - 600
Fecal Strep (CFU/100 ml)	20 - 310	80 - >780
Flow (CFS)	0.06 - 24.96	0.03 - 26.48

Table 4. White Ave. & Troy Highway Water Quality Data¹

¹ Collected by the Washington Water Research Center

²November-April, 8 samples

³May-October, 6 samples

Parameter	Winter Values ²	Summer Values
Temperature (°C)	0 - 7.6	6.9 - 13.5
рН	6.8 - 7.7	6.9 - 7.8
Dissolved Oxygen (mg/L)	5.7 - 12.8	5.6 - 11.6
Conductivity	165 - 536	171 - 751
Alkalinity (mg/L as CaCO ₃)	37 - 201	52 - 225
Suspended Solids (mg/L)	6.0 - 265	3.6 - 203.2
Total Nitrogen (mg/L)	2.12 - 12.21	1.7 - 13.02
NH ₃ (mg/L)	0.08 - 2.04	0.08 - 4.84
NO3 (mg/L)	1.41 - 11.46	0.72 - 4.94
NO ₂ (mg/L)	< 0.01 - 0.34	0.03 - 0.31
Total Phosphorus (µg/L)	39 - 775	225 - 1060
Fecal Coliforms (CFU/100 ml)	12 - 290	144 - >2000
Fecal Strep (CFU/100 ml)	61 - 420	128 - 2500
Flow (CFS)	0.11 - 24.33	0.07 - 20.09

Table 5. Sixth St. & Deakin Water Quality Data¹

¹ Collected by the Washington Water Research Center ²November-April, 9 samples

³May-October, 6 samples

Under normal conditions, the Moscow WWTP discharges approximately two million gallons of effluent a day into Paradise Creek. During low flow periods, the flow in the creek increases at least ten fold as a result of this discharge. This water is generally warmer then the creek with an average yearly temperature of 14.3°C (SWWRC 1994). Paradise Creek below the WWTP has higher concentrations of suspended solids, ammonia, nitrate, and total phosphorus due to the discharge (SWWRC 1994) (IDHW-DEQ 1994).

Parameter	Winter Values ²	Summer Values
Temperature (°C)	4.7 - 14.8	9.5 - 17.3
pH	6.6 - 7.7	7.1 - 7.6
Dissolved Oxygen (mg/L)	0.9 - 12.0	1.9 - 10.3
Conductivity	255 - 993	277 - 750
Alkalinity (mg/L as CaCO ₃)	60 - 176	93 - 183
Suspended Solids (mg/L)	7.8 - 736	4.0 - 35.1
Total Nitrogen (mg/L)	7.56 - 29.49	13.6 - 21.9
NH ₃ (mg/L)	1.00 - 7.60	1.33 - 3.10
NO ₃ (mg/L)	4.23 - 12.20	3.10 - 10.95
NO ₂ (mg/L)	< 0.01 - 1.00	0.10 - 0.80
Total Phosphorus (µg/L)	780 - 7250	1060 - 4200
Fecal Coliforms (CFU/100 ml)	11 - >630	84 - 310
Fecal Strep (CFU/100 ml)	7 - 2000	28 - 866
Flow (CFS)	4.7 - 41.61	3.02 - 22.18

Table 6. ID/WA Border Water Quality Data¹

¹ Collected by the Washington Water Research Center

²November-April, 9 samples

³May-October, 6 samples

In summer 2006, the Washington State Department of Ecology initiated several TMDLbased field studies to assess current stream temperatures and water quality conditions along the Palouse River, South Fork Palouse River, and Paradise Creek. The study, Surface-water/Groundwater Interactions and Near-stream Groundwater Quality along the Palouse River, South Fork Palouse River, and Paradise Creek, was part of that effort, and was undertaken to characterize the thermal and water quality influences that groundwater imparts to these rivers along gaining reaches. Results from that study showed that measurable concentrations of dissolved orthophosphate (0.018 to 0.171 mg/L) and dissolved total phosphorus (0.073 to 0.875 mg/L) were found at all sampled piezometer sites. Measurable concentrations of dissolved nitrate+nitrite-N and ammonia were found at roughly half of the sampled piezometers at concentrations

BIOLOGICAL ASSESSMENT OF THE SOUTH FORK PALOUSE RIVER: USEPA Region 10, Seattle, WA CONTRACT NO.: EP-C-08-004 Task Order No. 0058

ranging from 0.013 to 10.1 mg/L and 0.03 to 0.549 mg/, respectively. The average estimated unit-area-mass loading to the river from discharging groundwater varied by parameter and location. The loading ranged from 0.03 to 107 mg/d/m² of streambed for dissolved total phosphorus, and 0.01 to 3,119 mg/d/m² for dissolved nitrate+nitrite-N. These load values are considered upper bound estimates since they do not account for biological or chemical reactions that may potentially reduce nutrient concentrations in discharging groundwater as it passes through the final few feet of the streambed (Ecology 2009).

Analyses of samples collected from streams in the Palouse River Basin showed the water to be chemically suitable for most common uses. The water temperature of the Palouse River at Hooper during October 1967-September 1971 ranged from a low of 0°C (32°F) in December to a high of 30°C (86°F) in July. The quantity of suspended sediment transported by streams in the basin, owning to the rapid erosion of the loess soils covering much of the basin, is greater than that of most other basins in the State. The average annual sediment yield during July 1961-June 1965 ranged from 5 tons/mi² from Cow Creek at Hooper to 2,100 tons/mi² from Rebel Flat Creek at Winona, and the average annual suspended-sediment discharge of the Palouse River at its mouth during the same period was 1.50 million tons (Nassar and Walters 1975).

The Palouse River and its tributaries are currently listed on the states (Washington & Idaho) 303(d) list for metals, pesticides, fecal coliform, dissolved oxygen, pH, ammonia-N, sediment, nutrients, temperature, and flow. The most common pollutants affecting the Palouse River and its tributaries are temperature, dissolved oxygen, pH, and fecal coliform. The South Fork of the Palouse River has been rated as having the worst water quality in Washington based on WDOE's water quality ambient monitoring data collected in Pullman (Cook 2001). In Idaho, the Palouse River tributaries of Deep Creek, Flannigan Creek, West Fork Rock Creek, Gold Creek, Hatter Creek, Big Creek, and the South Fork Palouse River are listed as water quality limited for bacteria, flow alteration, habitat alterations, nutrients, sediment and temperature. Cow Creek in Idaho is listed for habitat alterations, nutrients and temperature. Paradise Creek is the only Idaho stream in the drainage where a Total Maximum Daily Load (TMDL) Implementation Plan has been developed (Cook 2001).

Based on total annual load estimates, the Moscow WWTP was the largest source of phosphorus and nitrogen to Paradise Creek. The Moscow WWTP was also the major source of ammonia observed at the Busch site in WA and therefore contributes to WA state ammonia and dissolve oxygen standards not being met at this site. Ag fields were a major source of suspended solids to Paradise Creek during peak flows in late winter and early spring when precipitation, runoff and erosion were greatest. Additional non-point sources of pollution include livestock and animal research facilities, forestry,

mining, construction, recreation, failing septic systems and toxic sites. Dissolved oxygen concentrations were generally lowest in the summer and fall of 1993. Poor water quality is not the only problem facing Paradise Creek. The streambanks and habitat surrounding Paradise Creek have also experienced major damage. The removal of riparian vegetation, alternation of the stream channel and construction along the stream bank have resulted in unstable stream bank conditions which increase erosion and damage the habitat of aquatic organisms including macroinvertebrates and fish. Removal of riparian vegetation is also greatly responsible for the elevated water temperatures observed in Paradise Creek and the SFPR in the summer (Doke & Hashmi 1994).

Biological Conditions

Summer steelhead, bull trout, fall chinook, and smallmouth bass are all known to be present in the lower six miles of the Palouse River. Fall chinook use this reach of the Palouse River for spawning and rearing as well. However, the Palouse Falls at approximately 185 feet is a complete barrier to anadromous and non-anadromous fish passage. Anadromous fish and bull trout are not present in the headwaters of the Palouse River within Washington (Kuttel 2002).

Brook stickleback is established in the upper 36 km of Rock Creek, Spokane, Washington. Rock Creek is a tributary of the Palouse River which drains into the Snake River. Collection prior to 1999 yielded no brook stickleback in this drainage, leading researchers to believe that the species was recently introduced. This is the fifth record of occurrence west of the continental divide in the United States since 1995 and the first occurrence in Washington. Brook Stickleback were previously collected in the Swan/Flathead River Drainage, Montana, Green River Drainage, Utah, the Elk River Drainage in Colorado, and the Klamath River Drainage, California (Scholtz et al. 2003).

Fish species found above and below Palouse falls from 1968 through 1975 did not differ greatly. Species composition below Palouse Falls was composed of eight native species and three exotics. Upstream of Palouse Falls fish collections contained eleven native species and nine exotics. The major differences in species composition above and below Palouse Falls appeared to be the absence of *C.beldingi* above the falls. *C.beldingi* is the most abundant cottid in the lower Clearwater River and tributaries near the mouth of the Clearwater and presumably also the lower Snake River. The exclusion of *C.beldingi* and *C. bairdi* of the *hubbsi* form from above the falls would seem to indicate that the Palouse River and its tributaries were subjected to multiple invasions of cottid species and forms from centers of endemism (Maughan et al 1980). One species, *Ptychocheilus oregonensis*, was collected at the South Fork Palouse River station (#11) in 1976 (Maughan et al 1980).

Griffith (1953) surveyed the parasites of fishes found in the Palouse Area of southeastern Washington from the fall of 1948 through the spring of 1950. Fish were collected from lakes, ponds, and streams in 15 different localities. A total of 181 specimens representing seven families and 17 species were examined. Table 7 indicates locations surveyed no. of fish species collected, and rates of infection.

Localities	Number of Fish Species	Number Specimens Examined	Number Infected	Per Cent Infected	Number with Cestodes	Number with Trematodes	Number with Nematodes	Number with Acanthocephala	Number with Copepods	Number with Multiple Infections
Asotin Creek. Davis Lake. Missouri Flat Creek. Palouse River, North Fork. Paradise Creek. Robinson Lake, Idaho. Rock Creek. Samish Lake. Snake River, Clarkston. Snake River, Davis Bar. Snake River, Wawawaii. Sprague Pothole. Union Flat Creek. Williams Lake.	$ \begin{array}{r} 1 \\ 7 \\ 1 \\ 2 \\ 3 \\ 1 \\ 4 \\ 1 \\ 2 \\ 4 \\ 1 \\ 5 \\ 1 \\ 7 \end{array} $	$2 \\ 32 \\ 19 \\ 2 \\ 9 \\ 3 \\ 14 \\ 5 \\ 3 \\ 6 \\ 4 \\ 10 \\ 30 \\ 6 \\ 36 \\ 36 \\ 36 \\ 36 \\ 36 \\ 36$	$ \begin{array}{r} 2 \\ 18 \\ 17 \\ 1 \\ 6 \\ 3 \\ \cdots \\ 2 \\ 3 \\ 5 \\ 4 \\ 10 \\ 4 \\ 5 \\ 15 \\ \end{array} $	$\begin{array}{c} 100.0\\ 56.3\\ 89.5\\ 50.0\\ 66.7\\ 100.0\\ 0.0\\ 40.0\\ 100.0\\ 83.5\\ 100.0\\ 100.0\\ 13.3\\ 83.3\\ 41.7 \end{array}$	$ \begin{array}{c} & 2 \\ & 1 \\ & \ddots \\ & \ddots \\ & \ddots \\ & 3 \\ & \ddots \\ & 2 \\ & 4 \\ & 4 \\ & 1 \\ & 13 \\ \end{array} $	$ \begin{array}{c} 1 \\ 5 \\ $	$ \begin{array}{c} 2 \\ 7 \\ \\ \\ 1 \\ 3 \\ 4 \\ 3 \\ 10 \\ \\ 1 \end{array} $	$ \begin{array}{c} 16 \\ 12 \\ 2 \\ \\ 1 \\ 4 \\ 1 \\ \\ 3 \\ \end{array} $	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$	$\begin{array}{c} & & & & & \\ & & & & 7 \\ & & & 7 \\ & & & &$

Table 7. Rates of Infection for the various streams and lakes.

Palouse Fine-Scale Sucker-21 examined; 18 infected. Palouse fine-scale sucker were taken from two areas: the South Fork of the Palouse River and Missouri Flat Creek. Columbia large-scale sucker, 27 examined, 26 infected, was also collected from the South Fork Palouse River and the North Fork Palouse River. Western Dace-9 examined, 5 infected. These minnows were the most abundant fish in the small creeks and streams of the Palouse area. Dace were collected from Robinson Lake (may have been filled and converted to a County Park), South Fork of the Palouse River, North Fork of the Palouse River, and Paradise Creek. One largemouth bass fingerling from the North Fork of the Palouse River had six copepods attached externally (Griffith 1953).

Tetra Tech, Inc. Surface Water Group 1420 Fifth Avenue, Suite 550 Seattle, Washington 98101

The only salmonid native to the Palouse was an isolated population of Yellowstone cutthroat trout, as Palouse Falls was an effective barrier to redband trout migration. Currently no native salmonid species and no anadromous fish exist in the drainage. Idaho State Water Quality Standards do not distinguish between native and non-native salmonids for the designation and protection of the salmonid spawning beneficial use (IDEQ 2007).

The following native fish may be found in the South Fork Palouse River:

- Longnose dace
- Speckled dace
- Redside Shiner
- Largescale sucker
- Bridgelip sucker

The following species have been introduced in the watershed:

- Brook trout
- Brown Trout
- Rainbow trout
- Northern pike minnow

Benthic algae was sampled in the South Fork Palouse River and Paradise Creek as part of Munn et al. (2002) study on the response of benthic algae to environmental gradients in agriculturally dominated landscapes. Results show that Blue-green algae dominated the forested sites, composing 85 to 95% of the relative abundance, with the remainder consisting of small percentages of diatoms, green, and red algae. In contrast, diatoms tended to dominate the urban and range sites, with blue-greens far less dominant. The range sites were somewhat unique in that the red alga *Audoui-nella violacea* composed 35% of the community at the upstream range site, which was fed by shallow groundwater; however, this red alga decreased to only 5% at the downstream range site. Sites in the dryland and irrigated agricultural areas contained various combinations of blue-greens and diatoms, with the relative abundance of either varying substantially from site to site. Both the South Fork Palouse River and Paradise Creek were considered to be in the urban landscape because approximately 95% of instream flows comes from wastewater treatment discharge (Munn et al 2002).

Dr. Fred Rabe et al. (1993) have monitored the macroinvertebrate communities of Paradise Creek since 1991. The data used in the UAA study (IDHW-DEQ 1994) was collected in October 1992 and February, April, June 1993. Samples were collected along the entire length of Paradise Creek and portions of the South Fork of the Palouse River, but only those stations which correlate with the UAA stations are presented below in Table 8. Schwartz Creek was used as a reference site.

In most of the samples collected for the UAA study (IDHW-DEQ 1994), Chironomidae (midges) was the dominant insect group in Paradise Creek and are therefore ecologically important because of their high densities and diversity. Total midge abundance in excess of 30% probably indicates depressed habitat/water quality (Wisseman 1993). In contrast, midge populations in samples from Schwartz Creek were well below 30% of the total abundance. Other dominant insects included Odonata, the dragonflies and damselflies. In the October samples, high numbers of damselflies were found at White & Troy and Sixth & Dealcin. Damselflies are extremely tolerant of impaired water conditions and sediment, their ability to climb onto the reed canary grass enables them to partially avoid the water (Rabe et al. 1993). Oligochaeta (aquatic earthworms) had the highest density of the non-insects at the three lower sites. In October, over a thousand individuals per square meter were recorded below the WWTP, this is common below sewage effluent. Other non-insect dominants were Gastropoda (snails) and Hirudinea (leeches).

Metric Evaluated	Mt. Oct	. Vie Feb	ew P Apr	ark Jun	Wh	ite & Feb	Apr	y Jun	6th Oct	& I Feb	Deak Apr	in Jun	Bel	ow V Feb	Apr J	P Tun	-S Oct. 1	šchv Feb	vart An	z Jun
Interne Distance			1.421			1.00								100					·	
Total Abundance	213	219	398	380	645	133	131	195	847	77 :	200	194	141	2 478	427	803	146	- 1	-	56
Species Richness	31	16	31	38	28	19	24	26	23	14	23	14	5	7	6	12	36	34	29	33
EPT-Taxa Richn	2	2	3	4	0	1	0	2	0	0	0	0	0	0	0	0	21	20	18	1:8
Hilsenhoff B.I.	7.0	4.2	6.7	7.4	7.6	7.9	7.8	8.2	8.9	8.0	8.1	8.4	9.0	9.0	9.0	8.7	3.2	-	-	4.5
%Dominant Taxa	15	41	24	18	32	19	27	21	35	41	16	19	73	87	80	50	7	-	-	-

 Table 8. Macroinvertebrate Results in Paradise Creek

Results from fish shocking in Paradise Creek UAA study (IDHW-DEQ 1994) are in Table 9.

Table 9.	Electrofishing	Results in	Paradise	Creek
Tuble J.	LICCUONSING	nesures in	i ui uuise	CICCK

Species	Amount	Size	Location
Speckled dace (Rhinichthys osculus)	> 50	1-3"	Mountain View Park ¹ , White & Troy Hwy., Guy Wicks Field
Bridgelip sucker (Catostomus columbianus)	11	3-6"	White Avenue & Troy Highway
Longnose sucker (Catostomus catostomus)	1	6"	White Avenue & Troy Highway

¹Shocking recovery estimated at 20% due to large amounts of duckweed on water surface

Fish resources within the Palouse River sub-basin are limited by long standing in-stream, riparian, and up-land habitat conditions, which have contributed to degraded water quality, extreme seasonal fluctuations in water quantity, and subsequent degraded instream habitat conditions. The existing fish community in the lower Palouse River (below Palouse Falls) consists of the salmonid species noted previously, as well as native

resident species including largescale sucker *Catostomus macrocheilus*, redside shiner *Richardsonius balteatus*, northern pikeminnow *Ptychocheilus oregonensis*, and chiselmouth *Acrocheilus alutaceus*. Recent fish survey work conducted by WDFW below the Palouse Falls have confirmed the presence of sub-adult bull trout *Salvelinus confluentus*, rainbow trout / juvenile steelhead, tench *Tinca tinca*, bluegill *Lepomis macrochirus*, yellow perch *Perca flavescens*, northern pikeminnow, chiselmouth, redside shiner, and dace spp. (Cook 2001).

Historic stocks of native species that continue to inhabit the Palouse River above the falls include chiselmouth, northern pikeminnow, largescale sucker *Catostomus macrocheilus*, redside shiner, speckled dace *Rhinichthys osculus*, and cottid species. Thirty-seven fish species have been documented within the Palouse River sub-basin. No ESA listed species have been documented as occurring above the Palouse Falls. A synoptic list of fish species for the Palouse River sub-basin is listed in Table 10 below (Cook 2001).

Species	Origin	Status
Bull trout (Salvelinus confluentus) *	Ν	U
Steelhead trout */ Rainbow trout (Oncorhynchus mykiss)	Ν	O/U
Westslope cutthroat trout (Oncorhynchus clarkii lewisi)	Ν	O/U
Fall Chinook salmon (Oncorhynchus tshawytscha) *	Ν	O/S
Mountain whitefish (Prosopium williamsoni)	Ν	O/U
Brook trout (Salvelinus fontinalis)	Ν	O/U
Lahontan cutthroat trout (Oncorhynchus clarkii henshawi)	E	O/U
Brown trout (Salmo trutta)	E	O/U
Northern pikeminnow (Ptychocheilus oregonensis)*	Ν	C/S
Speckled dace (Rhinichthys osculus)*	Ν	C/U
Longnose dace (Rhinichthys cataractae)*	Ν	O/U
Redside shiner (Richardsonius balteatus)*	Ν	C/U
Chiselmouth (Acrocheilus alutaceus)*	Ν	O/U
Peamouth (Mylocheilus caurinus)	Ν	O/U
Largescale sucker (Catostomus macrocheilus)	Ν	O/U
Longnose sucker (Catostomus catostomus)	Ν	O/U
Bridgelip sucker (Catostomus columbianus)	Ν	C/S
Mountain sucker (Catostomus platyrhynchus)	Ν	O/U
Tench (<i>Tinca tinca</i>)	E	O/U
Walleye (Sander vitreum)	E	O/S
Largemouth bass (Micropterus salmoides)*	E	O/S
Brown bullhead (Ictalurus nebulosus)*	E	O/U
Yellow bullhead (Ictalurus natalis)	E	O/U

Table 10. Fish species present in the Palouse Subbasin, Washington. (Cook, 2001)

Tetra Tech, Inc. Surface Water Group 1420 Fifth Avenue, Suite 550 Seattle, Washington 98101

BIOLOGICAL ASSESSMENT O	F THE SOUTH FORK PALOUSE RIVER:
USEPA Region 10, Seattle, WA	
CONTRACT NO.: EP-C-08-004	Task Order No. 0058

Smallmouth bass (Micropterus dolomieu)*	Е	O/S
Slimy sculpin (<i>Cottus cognatus</i>)	Ν	O/D
Mottled sculpin (Cottus bairdi)*	Ν	O/U
Brook stickleback (Culaea inconstans)	E	O/I
Piute sculpin (<i>Cottus beldingii</i>)* (cottid species identification /	Ν	C/U
location(s) in question)		
Torrent sculpin (Cottus rhotheus)	Ν	O/U
Goldfish (Carassius auratus)	E	O/U
Yellow perch (<i>Perca flavescens</i>)*	E	O/U
Carp (<i>Cyprinus carpio</i>)*	Е	C/U
Bluegill (Lepomis macrochirus)*	Е	O/U
Crappie (Pomoxis spp.)*	Е	O/S
Channel catfish (Ictalurus punctatus)	Е	O/S
Grass pickerel (Esox americanus vermiculatus)	Е	O/U
Pumpkinseed (Lepomis gibbosus)	Е	O/U
E=Exotic, N=Native, A=Abundant, C=Common, O=Occasional,		
U=Unknown, S=Stable, I=Increasing, D=Decreasing, * denotes		
presence below Palouse Falls		

Population densities of rainbow trout in the sub-basin are primarily related to stocking of trout made by past and present fish management agencies in bodies of water such as Chapman Lake, Rock Lake, Sprague Lake, other lowland lakes within the Cow Creek and Rock Creek drainage(s), and Union Flat Creek. Limited natural trout spawning is known to occur in portions of Rock Creek. Rainbow trout are also known to naturally reproduce in portions of Union Flat Creek (Cook 2001).

Stream habitat usage by resident salmonids is dictated by the extremely few locations within the Palouse River sub-basin where agriculture, grazing, road building, and logging practices have not significantly altered habitat conditions such that salmonids can survive. There are a small number of tributaries to the Palouse River, which exhibit isolated reaches of relatively intact natural habitats and which contain self-sustaining wild populations of salmonids. The distribution and relative abundance of resident salmonids, including possibly native redband rainbow trout, within the watershed is generally unknown. Rainbow trout from several origins have been introduced throughout the Palouse Sub-basin. WDFW has regularly stocked rainbow trout in to Chapman Lake, Rock Lake, Williams Lake, Hog Canyon Lake, Fish Trap Lake, Sprague Lake and other smaller water bodies within the sub-basin. No genetic analysis of resident rainbow trout has been conducted to determine the possible remnant presence of redband rainbow trout (Cook 2001).

The first stocking of rainbow trout occurred in 1950 in the Palouse River, Idaho. The size of rainbow trout stocked has been "catchable" (8-12 inches), to provide an immediate

return to the creel. There is evidence that natural reproduction is occurring, as they have been recently sampled in streams where stocking never occurred, or is no longer occurring (IA1). Stock of rainbow planted has varied over the years depending on egg availability (Cook 2001).

Reportedly, Paradise Creek has supported several species of trout over the past century. During a recent Beneficial Use Attainability Study, a quote was included that states brook trout are currently being supported by Paradise Creek and its tributaries in the Palouse Mountain Range (Wertz 1993). There have also been reports of rainbow trout being caught near Reaney Park in Pullman. These trout are likely released into Paradise Creek following a fish derby which takes place in Reaney Park Swimming pool each fall. Pullman Park and Recreation employees believe that some children release the trout that they have caught at the fish derby into Paradise Creek. If rainbow trout are, in fact, released to Paradise Creek, they likely migrate out of Paradise Creek to the SFPR to seek deeper, cooler waters with a higher dissolved oxygen concentration (Doke and Hashmi 1994).

c. Current Conditions

Field collected information from late summer 2010 (September 22 through October 1) is included in the Final Technical Report.

NEXT STEPS

a. Identify spatial distribution of fish species and other biological communities

Information extracted from available literature and reported in this Technical Memorandum will be transferred to appropriate sections of the Final Technical Report. Reconstruction of fish population distribution throughout the drainage is a primary component of this study and identification of factors that could reasonably explain any distributional differences between two successive time periods is the goal. This information will determine the characteristics of a biological community upon which future restoration goals will be based.

b. Attribute changes in biological communities explained by environmental information

Comparisons of biological communities and the amount of difference between two successive time periods will be initially identified. The reason for these differences will be closely examined with available information collected in the literature survey for each time period. Significant shifts of instream conditions or in land use practices will be considered as reasons for temporal changes in biological communities. The changes in attributes between time periods may be the primary factors that limit migratory distribution of current species that are managed, in part, using water quality criteria. This determination will inform on whether the current water quality criteria appropriately represent original biological community expectations or if characteristics of the community were different from the current focus.

REFERENCES

Bentley, W.W. and E.M. Dawley. 1981. *Effects of Supersaturated Dissolved Atmospheric Gases on Northern Squawfish (Ptychocheilus oregonensis)*. Northwest Science. Vol. 55. pp. 50-61.

Black, A.E., J.M. Scott, E. Strand, R.G. Wright, P. Morgan, and C. Watson. 2002. Biodiversity and Land-use History of the Palouse Bioregion: Pre-European to Present. Land Use History of North America, Chapter 10. U.S. Geological Survey, <u>http://biology.usgs.gov/luhna/chap10.html</u>.

Blankenship, H.L. and G.W. Mendel. 1993. Upstream Passage, Spawning, and Stock Identification of Fall Chinook Salmon in the Snake River, 1992. Annual Report FY 92-93. Prepared for U.S. Department of Energy Bonneville Power Administration Division of Fish and Wildlife. Project No. 92-046. 83p.

Bilhimer, D., J. Carroll, and K. Sinclair. 2006. South Fork Palouse River Temperature TMDL Study Quality Assurance Project Plan. Washington State Department of Ecology, Environmental Assessment Program. Pub. No. 06-03-104. pp.56.

Buscemi, P.A. 1969. *Chemical and Detrital Features of Palouse River, Idaho, Runoff Flowage*. OIKOS. Vol 20, No. 1. pp. 119-127.

Butler, V.L. 2004. Marmes Rockshelter: A Final Report on 11,000 Years of Cultural Use, Chapter 11: Fish Remains. (Brent A. Hicks, editor). pp. 320-337. Washington State University Press, Pullman, Wa.

Carroll, J. and E. Snouwaert. 2009. South Fork Palouse River Fecal Coliform Bacteria TMDL: Water Quality Improvement Report. Washington State Department of Ecology. Pub. No. 09-10-060. pp. 147.

Carroll, J. and N. Mathieu. 2006. South Fork Palouse River Dissolved Oxygen and pH TMDL Study Quality Assurance Project Plan. Washington State Department of Ecology, Environmental Assessment Program. Pub. No.06-03-112. pp.63.

Clark, K. 2003. Tributaries of the Palouse River; Monitoring Report 2002. Technical Results Summary KPC-PR-02, Idaho Association of Soil Conservation Districts. Moscow, Idaho. 60p.

Cook, T., and Palouse-Rock Lake Conservation District. 2001. DRAFT Palouse Sub-Basin Summary. Prepared for the Northwest Power Planning Council. 124p.

Daubenmire, R.F. 1975. *Floristic Plant Geography of Eastern Washington and Northern Idaho*. Journal of Biogeography. Vol. 2, No. 1. pp. 1-18.

Daubenmire, R. F. 1970. Steppe vegetation of Washington. Washington Agricultural Experiment Station, Washington State University, Technical Bulletin 62.

Daubenmire, R. F. 1942. An Ecological Study of the Vegetation of Southeastern Washington and Adjacent Idaho. Ecological Monographs. Vol. 12, No. 1. pp. 53-79.

Dauble, D.D., T.P. Hanrahan, D.R. Geist, and M.J. Parsley. 2003. *Impacts of the Columbia River Hydroelectric System on Main-Stem Habitats of Fall Chinook Salmon*. North American Journal of Fisheries Management. Vol. 23. pp. 641-659.

Dauble, D. 2000. Assessment of the Impacts of Development and Operations of the Columbia River Hydroelectric System on Mainstem Riverine Processes and Salmon Habitats, Final Report 2000, Report to Bonneville Power Administration, Contract No.1998AC08104, Project No. 199800402. Bonneville Power Administration No. DOE/BP-08104-1.

Doke, J. L. and G.B. Hashmi. 1994. Paradise Creek Watershed Characterization Study. Prepared for Palouse Conservation District, Pullman, WA. State of Washington Water Research Center, Washington State University. 240p.

Ecology (Washington Department of Ecology). 2009. Surface-water/Groundwater Interactions and Near-stream Groundwater Quality along the Palouse River, South Fork Palouse River, and Paradise Creek. Ecology Publication No. 09-03-007. Department of Ecology, Environmental Assessment Program, Olympia, WA. 75p.

Ecology (Washington Department of Ecology). 2006. Water Quality Standards for Surface Waters of the State of Washington: Chapter 173-201A WAC. Ecology Publication No. 06-10-091. Department of Ecology, Water Quality Program, Olympia, Washington. 122p.

Fulton, L. A. 1968. Spawning areas and abundance of Chinook salmon (*Oncorhynchus tshawytscha*) in the Columbia River basin-past and present. USFWS Special Scientific Report No. 571.

Fulton, L.A. 1970. Spawning Areas and Abundance of Steelhead Trout, Coho, Sockeye, and Chum Salmon, in the Columbia River Basin-Past and Present. USFWS Special Scientific Report No. 618.

Gilmore, S. 2004. Palouse Subbasin Management Plan, Chapter 3: Management Plan. Prepared for Palouse-Rock Lake Conservation District. 57p.

Golder Associates, Inc. and Daily Environmental. 2009. WRIA 34-Palouse Watershed Detailed Implementation Plan. Prepared for Palouse Watershed (WRIA 34) Planning Unit. 56p.

Golder Associates, Inc. 2004. Final Draft, Phase II-Level 1 Technical Assessment for the Palouse Basin (WRIA 34). Prepared for Palouse Watershed (WRIA 34) Planning Unit. 361p.

Green, K.E., J.C. Ebbert, and M.D. Munn. 1994. Nutrients, suspended sediment, and pesticides in streams and irrigation systems in the Central Columbia Plateau in Washington and Idaho, 1959- 1991. U.S. Geological Survey Water-Resources Investigations Report 94-4215. US Geological Survey, Tacoma, Washington.

Griffith, R.E. 1953. *Preliminary Survey of the Parasites of the Fish of the Palouse Area*. Transactions of the American Microscopical Society. Vol. 72, No. 1 (Jan., 1953). pp. 51-57.

Henderson, R.D. 2005. Palouse River Tributaries Subbasin Assessment and TMDL. Idaho Department of Environmental Quality. Lewiston, Idaho. 323p.

HDR, Inc. 2007. Palouse (WRIA 34) Watershed Plan. 434p.

Idaho Department of Environmental Quality. 2007. South Fork Palouse Watershed Assessment and TMDLs. Lewiston, ID. 160p.

Idaho Department of Health and Welfare, Division of Environmental Quality. 1994. Water Quality Summary Report No. 29 Paradise Creek Use Attainability Assessment. North Central Idaho Regional Office. pp.32.

Idaho Department of Health and Welfare, Division of Environmental Quality. 1981. Water Quality Status Report No. WQ-46 South Fork Palouse River/Paradise Creek. Boise, Idaho.

Idaho Soil Conservation Commission. 2009. South Fork Palouse River TMDL Implementation Plan for Agriculture. Prepared for Idaho Department of Environmental Quality. In Cooperation with: Latah Soil Water Conservation District and South Fork Palouse River Watershed Advisory Group.

Kuttel, M. Jr. 2002. Salmonid Habitat Limiting Factors Water Resource Inventory Areas 33 (Lower) & 35 (Middle) Snake Watersheds, & Lower Six Miles of the Palouse River. Washington State Conservation Commission. Olympia, WA. pp. 223.

Latah Soil and Water Conservation District. 1986. Paradise Creek Idaho Agricultural Water Quality Program Pre-Application.

Latah Soil and Water Conservation District. 1981. Paradise Creek Idaho Agricultural Water Quality Program Pre-Application.

Looney, Chris. 2008. Habitat Loss and Fragmentation on the Palouse and its Impact on Arthropod Conservation. Dissertation, University of Idaho. June 2008. 127p.

Mathieu, N. and J. Carroll. South Fork Palouse River Fecal Coliform Bacteria TMDL Quality Assurance Project Plan. Washington State Department of Ecology, Environmental Assessment Program. Pub. No. 06-03-105. 53p.

Maughan, O.E., E.E. Edmundson, A.E. Farris, and R.L. Wallace. 1980. A Comparison of Fish Species above and below Palouse Falls, Palouse River, Washington-Idaho. Northwest Science. Vol. 54. No. 1. pp. 5-8.

Mendel, G., J. Trump, C. Fulton, and M. Gembala. 2004. Brief Assessment of Salmonids and Stream Habitat Conditions in Snake River Tributaries of Asotin, Whitman and Garfield Counties in Washington March 2001-June 2003 - Final Report. Washington Department of Fish and Wildlife Fish Program-Fish Management Division. Prepared for Salmon Recovery Funding Board, Olympia, WA. 173p.

Mendel, G., C. Fulton, and R. Weldert. 2003. An Investigation into the Migratory Behavior of Bull Trout (*Salvelinus confluentus*) in the Touchet River Basin. Washington State Department of Fish and Wildlife-Fish Management Division. Prepared for WDFW Olympia, WA and USFWS Spokane, WA. 27p.

Merigliano, M. F. and P. Lesica. 1998. *The native status of reed canarygrass (Phalaris arundinacea L.) in the inland Northwest, U.S.A.* Natural Areas Journal 18:223-230.

Munn, M.D., R.W. Black, S. J. Gruber. 2002. *Response of Benthic Algae to Environmental Gradients in an Agriculturally Dominated Landscape*. Journal of the North American Benthological Society. Vol. 21, No. 2. pp. 221-237.

Nassar, E.G. and K.L. Walters. 1975. Water Supply Bulletin 39, Water in the Palouse River Basin, Washington. Prepared in Cooperation with the USGS. 258p.

Parkhurst, Z.E. 1950. Survey of the Columbia River and its Tributaries Part 6: Area V Snake River System from the Mouth to the Grand Ronde River. USFWS Special Scientific Report No. 30.

Pelletier, G. J. 1995. South Fork Palouse River Total Maximum Daily Load of Ammonia, Addendum to 1993 Report. Washington State Department of Ecology, Environmental Investigations and Laboratory Services Program, Watershed Assessments Section. Pub. No. 93-329. 16p.

Pelletier, G. J. 1993. South Fork Palouse River Total Maximum Daily Load of Ammonia. Washington State Department of Ecology, Environmental Investigations and Laboratory Services Program, Watershed Assessments Section. Pub. No. 93-e48. 95p.

Rabe, F., L. Cazier, A. Thombrough, 3. Shuman, C. Luce, and 3. Bell. 1993. Habitat Assessment and Bioassessment of Paradise Creek and South Fork of the Palouse River at Selected Sites in Idaho and Washington: 1992-1993. Aquatics Unlimited, Moscow, Idaho.

Scheid, V.E. 1937. Fish in the Latah Formation. Science. Vol. 85, No. 2196. p. 120.

Scholtz, A.T., B.Z. Lang, A.R. Black, H.J. McLellan, and R.L. Peck. 2003. *Brook Stickleback Established in Eastern Washington.* Northwest Science. Vol. 70. No. 2. pp. 110-115.

Servheen, G., P. Morgan, B. Weddell, P. Gessler, and P. McDaniel. 2002. Wetlands of the Palouse Prairie: Historical Extent and Plant Composition. Prepared for Environmental Protection Agency, Idaho Operations Office, Boise, ID. 58p.

USDA. 1978. Palouse cooperative river basin study. USDA Soil Conservation Service. US Government Printing Office. Washington D.C. 182 p.

USGS (U.S. Geological Survey). 1921. Water Supply Bulletin No. 1 Monthly and Yearly Summaries of Hydrometric Data in the State of Washington: 1878-1920. State of Washington, Department of Conservation and Development, Division of Water Resources. Olympia, Washington. 140p.

USGS (U.S. Geological Survey). 1962. Water Supply Bulletin No. 15 Monthly and Yearly Summaries of Hydrographic Data in the State of Washington: September 1953 to September 1960. State of Washington, Department of Conservation. Olympia, Washington. 385p.

Watershed Sciences, Inc. 2006. Airborne Thermal Infrared Remote Sensing Palouse River Basin, WA/ID. Submitted to Washington Department of Ecology, Environmental Assessment Program, and City of Moscow Water, Water Department.

Weddell, B.J. Ph.D. Date Unknown. Historical Vegetation of Seasonally Moist Depressions in the South Fork of the Palouse River Watershed. Draba Consulting. email: <u>weddellb@pullman.com</u>

Wertz, L.B. 1993. Beneficial Use Attainability Assessment Workplan: Paradise Creek, Latah County, Idaho. Prepared by the Idaho Department of Health and Welfare Division of Environmental Quality.

Wisseman, B. 1993. Benthic Invertebrate Bioassessment. Aquatic Biology Associates. Corvallis, OR.

APPENDIX C. CURRENT INSTREAM BIOLOGICAL CHARACTERIZATION SAMPLING SITE SUMMARY INFORMATION

Site: SFPR-033355 Stream: South Fork Palouse River

State: Washington Date: 09 /22/2010 Lat.: 46.865166 Long.: -117.332451

Mean Wetted Width (m)	7.4
Est. Mean Depth (m)	0.5
Length (m)	160

Water Quality	Start	Finish
Temperature (°C)	12.67	
pH	8.05	
Dissolved Oxygen (mg/l)	9.98	
Conductivity (µs/cm)	560.8	

Physical Habitat

Epifaunal Substrate	16
Pool Substrate Charact.	16
Pool Variability	13
Sediment Deposition	18
Channel Flow Status	18
Channel Alteration	20
Channel Sinuosity	9
Bank Stability (L)	7
Bank Stability (R)	6
Vegetative Protection (L)	1
Vegetative Protection (R)	1
Riparian Vegetative Zone (L)	7
Riparian Vegetative Zone (R)	9
Total Score	141

		Min.	Max.
Fish	Number	(mm)	(mm)
Catostomus columbianus	15	122	160
Acrocheilus alutaceus	26	118	128
Catostomus macrocheilus	42	113	186
Ptychocheilus oregonensis	81	82	214
Richardsonius balteatus	275	60	113
Rhinichthys osculus	464	47	90
Total Number	903		
Total Biomass (g)	5,572		

Benthic Macroinvertebrate Taxa

NA

Site: SFPR-033355				State: Washington	Lat.:	46.865166
Stream: South Fork P	alouse Ri	ver		Date: 09 /22/2010	Long.:	-117.332451
Densiometer	Down	Mid	Up			
Center looking Upstream	NA	NA	NA			
Center looking Left Bank	NA	NA	NA			
Center looking Downstream	NA	NA	NA			
Center looking Right Bank	NA	NA	NA			
Left Bank	NA	NA	NA			
Right Bank	NA	NA	NA			
Total	NA					
Substrate Composition						
Percent Fines	0					
Percent Sand	9					
Percent Gravel	26					
Percent Cobble	12					
Percent Boulder	53					
Percent Bedrock/Hardpan	0					
Total	100					

Site: SFPR-098891	State: Washington	Lat.:	46.865718
Stream: South Fork Palouse River	Date: 09 /28/2010	Long.:	-117.3125

Mean Wetted Width (m)	9.1
Est. Mean Depth (m)	0.8
Length (m)	150

Water Quality	Start	Finish
Temperature (°C)	15.33	16.7
pH	7.97	8.21
Dissolved Oxygen (mg/l)	8.5	11.76
Conductivity (µs/cm)	563.9	556.4
Conductivity (µs/cm)	563.9	556.4

Physical Habitat

Epifaunal Substrate	11
Pool Substrate Charact.	15
Pool Variability	11
Sediment Deposition	7
Channel Flow Status	13
Channel Alteration	10
Channel Sinuosity	6
Bank Stability (L)	7
Bank Stability (R)	4
Vegetative Protection (L)	1
Vegetative Protection (R)	1
Riparian Vegetative Zone (L)	3
Riparian Vegetative Zone (R)	2
Total Score	91

		Min.	Max.
Fish	Number	(mm)	(mm)
Catostomus columbianus	4	115	149
Acrocheilus alutaceus	6	95	122
Catostomus macrocheilus	24	134	142
Ptychocheilus oregonensis	11	71	205
Richardsonius balteatus	259	64	115
Rhinichthys osculus	165	52	91
Total Number	469		
Total Biomass (g)	2,765		

Benthic Macroinvertebrate Taxa	Number
Baetis tricaudatus	1
Fallceon quilleri	9
Tricorythodes sp.	142
Argia sp.	21
Coenagrion/Enallagma sp.	20
Dubiraphia sp.	24
Microcylloepus sp.	12
Optioservus sp.	89
Apedilum sp.	3
Cricotopus bicinctus gr.	5
Cricotopus sp.	3
Dicrotendipes sp.	3
Polypedilum sp.	1
Potthastia longimana gr.	1
Pseudochironomus sp.	2
Rheotanytarsus sp.	2

Site: SFPR-098891				State: Washington	Lat.:	46.865718
Stream: South Fork Palouse River			Date: 09 /28/2010	Long.:	-117.3125	
Densiometer	Down	Mid	Up	Benthic Macroinvertebrate Taxa	a (cont)	Number
Center looking Upstream	0	0	0	Tanytarsus sp.		4
Center looking Left Bank	0	0	0	Thienemanniella sp.		1
Center looking Downstream	0	0	0	Hemerodromia sp.		4
Center looking Right Bank	0	0	0	Simulium sp.		1
Left Bank	2	0	0	Helicopsyche sp.		6
Right Bank	3	0	0	Hydroptilidae		3
Total	5			Mystacides alafimbriata		6
				Nectopsyche sp.		28
Substrate Composition				Oecetis avara		12
Percent Fines	5			Petrophila sp.		2
Percent Sand	0			Gyraulus sp.		14
Percent Gravel	73			Physa sp.		1
Percent Cobble	11			Pisidium sp.		3
Percent Boulder	5			Erpobdella sp.		2
Percent Bedrock/Hardpan	6			Oligochaeta		52
Total	100			Hygrobates sp.		26
				Lebertia sp.		11
				Limnesia sp.		14
				Mideopsis sp.		1
				Crangonyx sp.		7
				Prostoma sp.		1
				Turbellaria		66
				Total		603

Site: SFPR-127307	State: Washington	Lat.:	46.838252
Stream: South Fork Palouse River	Date: 09 /28/2010	Long.:	-117.284617

Reach Characteristics

Mean Wetted Width (m)	7.3
Est. Mean Depth (m)	1.1
Length (m)	150

Water Quality	Start	Finish
Temperature (°C)	17.72	18.24
pH	7.74	8.03
Dissolved Oxygen (mg/l)	11.22	12.22
Conductivity (µs/cm)	611.5	603.8

Physical Habitat

Epifaunal Substrate	14
Pool Substrate Charact.	18
Pool Variability	11
Sediment Deposition	12
Channel Flow Status	20
Channel Alteration	19
Channel Sinuosity	9
Bank Stability (L)	5
Bank Stability (R)	6
Vegetative Protection (L)	1
Vegetative Protection (R)	1
Riparian Vegetative Zone (L)	1
Riparian Vegetative Zone (R)	8
Total Score	125

Fish	Number	Min. (mm)	Max. (mm)
Acrocheilus alutaceus	6	94	109
Catostomus macrocheilus	11	118	148
Ptychocheilus oregonensis	1	70	0
Lepomis gibbosus	1	92	0
Richardsonius balteatus	52	35	115
Rhinichthys osculus	55	48	69
Total Number	126		
Total Biomass (g)	1,028		

Benthic Macroinvertebrate

Taxa

NA
Site: SFPR-127307				State: Washington	Lat.:	46.838252
Stream: South Fork Pa	alouse Ri	ver		Date: 09 /28/2010	Long.:	-117.284617
Densiometer	Down	Mid	Up			
Center looking Upstream	0	1	2			
Center looking Left Bank	0	0	0			
Center looking Downstream	0	1	0			
Center looking Right Bank	1	1	3			
Left Bank	0	0	3			
Right Bank	1	5	12			
Total	30					
Substrate Composition						
Percent Fines	17					
Percent Sand	0					
Percent Gravel	51					
Percent Cobble	10					
Percent Boulder	11					
Percent Bedrock/Hardpan	0					
Total	89					

Site: SFPR-051531	State: Washington	Lat.:	46.787689
Stream: South Fork Palouse River	Date: 09 /29/2010	Long.:	-117.257404
Stream. South FOR Falouse River	Date. 09 / 29/ 2010	LUIIg	-11/.25/404

Mean Wetted Width (m)	7.9
Est. Mean Depth (m)	0.5
Length (m)	150

Water Quality	Start	Finish
Temperature (°C)	15.5	16.32
pH	7.64	7.76
Dissolved Oxygen (mg/l)	6.27	8.18
Conductivity (µs/cm)	643.2	647.4

Epifaunal Substrate	13
Pool Substrate Charact.	12
Pool Variability	12
Sediment Deposition	13
Channel Flow Status	16
Channel Alteration	17
Channel Sinuosity	8
Bank Stability (L)	6
Bank Stability (R)	8
Vegetative Protection (L)	2
Vegetative Protection (R)	2
Riparian Vegetative Zone (L)	3
Riparian Vegetative Zone (R)	3
Total Score	115

Fish	Number	Min. (mm)	Max. (mm)
Catostomus columbianus	12	139	207
Acrocheilus alutaceus	19	88	159
Catostomus macrocheilus	59	119	211
Ptychocheilus oregonensis	40	77	165
Richardsonius balteatus	136	64	128
Rhinichthys osculus	186	65	77
Total Number	452		
Total Biomass (g)	4,341		

Benthic Macroinvertebrate

Taxa

Site: SFPR-051531				State: Washington	Lat.:	46.787689
Stream: South Fork Pa	louse Riv	/er		Date: 09 /29/2010	Long.:	-117.257404
Dongiomotor	Down	Mia	Un			
Densionneter	Down	Mia	Up			
Center looking Upstream	0	0	0			
Center looking Left Bank	0	13	0			
Center looking Downstream	0	2	0			
Center looking Right Bank	0	0	3			
Left Bank	0	0	0			
Right Bank	0	0	0			
Total	18					
Substrate Composition						
Percent Fines	18					
Percent Sand	0					
Percent Gravel	54					
Percent Cobble	15					
Percent Boulder	2					
Percent Bedrock/Hardpan	0					
Total	89					

Sile: SFPR-106827 Sial	te: Washington	Lat.:	46.75549
Stream: South Fork Palouse River Date	e: 09 /29/2010	Long.:	-117.216619

Mean Wetted Width (m)	7.9
Est. Mean Depth (m)	0.7
Length (m)	150

Water Quality	Start	Finish
Temperature (°C)	18.42	19.44
pH	8.05	8.39
Dissolved Oxygen (mg/l)	12.78	14.5
Conductivity (µs/cm)	677.6	666.5

Epifaunal Substrate	18
Pool Substrate Charact.	17
Pool Variability	12
Sediment Deposition	8
Channel Flow Status	8
Channel Alteration	10
Channel Sinuosity	6
Bank Stability (L)	4
Bank Stability (R)	3
Vegetative Protection (L)	2
Vegetative Protection (R)	3
Riparian Vegetative Zone (L)	3
Riparian Vegetative Zone (R)	4
Total Score	98

		Min.	Max.
Fish	Number	(mm)	(mm)
Catostomus columbianus	22	135	112
Acrocheilus alutaceus	244	113	206
Catostomus macrocheilus	3	166	190
Ptychocheilus oregonensis	79	72	230
Richardsonius balteatus	240	69	147
Rhinichthys osculus	197	52	91
Total Number	785		
Total Biomass (g)	10,150		

Benthic Macroinvertebrate Taxa	Number
Baetis tricaudatus	2
Caenis sp.	1
Tricorythodes sp.	3
Argia sp.	1
Coenagrionidae	54
Dubiraphia sp.	1
Optioservus sp.	17
Cricotopus bicinctus gr.	3
Cricotopus sp.	8
Cricotopus trifascia gr.	104
Dicrotendipes sp.	21
Orthocladius sp.	16
Paratanytarsus sp.	22
Phaenopsectra sp.	1
Potthastia longimana gr.	1
Pseudochironomus sp.	1

Site: SFPR-106827	• -			State: Washington Lat.	: 46.75549
Stream: South Fork F	Palouse R	iver		Date: 09 /29/2010 Lon	g.: -117.216619
Densiometer	Down	Mid	Up	Benthic Macroinvertebrate Taxa (con	t) Number
Center looking Upstream	0	0	0	Rheotanytarsus sp.	4
Center looking Left Bank	0	0	3	Thienemanniella sp.	1
Center looking Downstream	0	0	0	Bezzia/Palpomyia sp.	1
Center looking Right Bank	0	0	0	Hemerodromia sp.	15
Left Bank	1	0	8	Simulium sp.	11
Right Bank	0	0	2	Hydropsyche sp.	1
Total	14			Hydroptilidae	3
				Mystacides alafimbriata	6
Substrate Composition				Sphaeriidae	5
Percent Fines	8			Oligochaeta	20
Percent Sand	0			Hygrobates sp.	17
Percent Gravel	49			Lebertia sp.	124
Percent Cobble	37			Limnesia sp.	1
Percent Boulder	6			Sperchon sp.	5
Percent Bedrock/Hardpan	0			Crangonyx sp.	76
Total	100			Nematoda	1
				Prostoma sp.	1
				Turbellaria	16
				Total Number	564

Site: SFPR-057675 Stream: South Fork Palouse River

State: Washington Date: 09 /30/2010

Lat.: 46.72413 Long.: -117.168426

Mean Wetted Width (m)	5.7
Est. Mean Depth (m)	0.7
Length (m)	150

Water Quality	Start	Finish
Temperature (°C)	12.57	12.83
pH	7.76	7.85
Dissolved Oxygen (mg/l)	7.93	8.74
Conductivity (µs/cm)	669	687.9
/		

Physical Habitat

Epifaunal Substrate	12
Pool Substrate Charact.	13
Pool Variability	11
Sediment Deposition	8
Channel Flow Status	16
Channel Alteration	12
Channel Sinuosity	7
Bank Stability (L)	3
Bank Stability (R)	3
Vegetative Protection (L)	2
Vegetative Protection (R)	2
Riparian Vegetative Zone (L)	4
Riparian Vegetative Zone (R)	3
Total Score	96

Real Property and the second	

		Min.	Max.
Fish	Number	(mm)	(mm)
Catostomus columbianus	45	80	192
Acrocheilus alutaceus	3	160	206
Catostomus macrocheilus	19	114	195
Ptychocheilus oregonensis	27	116	233
Richardsonius balteatus	139	59	133
Rhinichthys osculus	11	64	97
Total Number	244		
Total Biomass (g)	5,216		

Benthic Macroinvertebrate Taxa	Number
Baetis tricaudatus	22
Coenagrionidae	6
Dubiraphia sp.	8
Optioservus sp.	97
Chironomus sp.	5
Cricotopus trifascia gr.	1
Cryptochironomus sp.	19
Dicrotendipes sp.	38
Eukiefferiella sp.	1
Micropsectra sp.	12
Parakiefferiella sp.	22
Parametriocnemus sp.	1
Paratanytarsus sp.	4
Phaenopsectra sp.	3
Procladius sp.	9
Tanytarsus sp.	9

Site: SFPR-057675				State: Washington La	at.:	46.72413
Stream: South Fork P	alouse Ri	iver		Date: 09/30/2010 Lo	ong.:	-117.168426
Densiometer	Down	Mid	Up	Benthic Macroinvertebrate Taxa (d	cont)	Number
Center looking Upstream	14	17	3	Thienemannimyia gr. sp.		2
Center looking Left Bank	3	17	0	Bezzia/Palpomyia sp.		2
Center looking Downstream	16	16	0	Hemerodromia sp.		6
Center looking Right Bank	17	17	0	Pericoma/Telmatoscopus sp.		1
Left Bank	0	17	0	Probezzia sp.		5
Right Bank	17	17	0	Hydropsyche sp.		2
Total	171			Mystacides alafimbriata		21
				Physa sp.		1
Substrate Composition				Pisidium sp.		6
Percent Fines	34			Erpobdella sp.		1
Percent Sand	0			Oligochaeta		132
Percent Gravel	35			Hygrobates sp.		1
Percent Cobble	19			Lebertia sp.		87
Percent Boulder	11			Sperchon sp.		4
Percent Bedrock/Hardpan	10			Crangonyx sp.		13
Total	109			Ostracoda		21
				Prostoma sp.		1
				Turbellaria		82
				Total Number		645

Site: SFPR-123211 Stream: South Fork Palouse River

State: Washington Date: 09 /30/2010

Lat.: 46.706892 Long.: -117.163538

Mean Wetted Width (m)	3.9
Est. Mean Depth (m)	0.8
Length (m)	150

Water Quality	Start	Finish
Temperature (°C)	13.25	15.9
pH	7.6	7.75
Dissolved Oxygen (mg/l)	7.79	10.38
Conductivity (µs/cm)	371.5	366.2
Physical Habitat		
Epifaunal Substrate	13	
Pool Substrate Charact.	8	
Pool Variability	11	
Sediment Deposition	11	
Channel Flow Status	12	
Channel Alteration	13	
Channel Sinuosity	9	
Bank Stability (L)	3	
Bank Stability (R)	3	
Vegetative Protection (L)	1	
Vegetative Protection (R)	1	
Riparian Vegetative Zone (L)	7	
Riparian Vegetative Zone (R)	4	
Total Score	96	

T.' 1	NT I	Min.	Max.
Fish	Number	(mm)	(mm)
Catostomus columbianus	60	80	175
Catostomus macrocheilus	28	35	121
Ptychocheilus oregonensis	18	119	201
Richardsonius balteatus	183	34	129
Rhinichthys osculus	223	52	67
Total Number	512		
Total Biomass (g)	4,184		

Benthic Macroinvertebrate Taxa	Number
Callibaetis sp.	1
Coenagrion/Enallagma sp.	20
Taeniopteryx sp.	2
Dubiraphia sp.	4
Optioservus sp.	18
Sialis sp.	1
Chironomus sp.	31
Cricotopus bicinctus gr.	2
Cricotopus sp.	1
Cryptochironomus sp.	13
Dicrotendipes sp.	116
Limnophyes sp.	1
Parakiefferiella sp.	12
Paratanytarsus sp.	4
Paratendipes sp.	1
Polypedilum sp.	1
Potthastia longimana gr.	3

	Site: SFPR-123211				State: Washington La	t.: 46.706892
	Stream: South Fork Palouse River				Date: 09 /30/2010 Lo	ng.: -117.163538
Den	siometer	Down	Mid	Up	Benthic Macroinvertebrate Taxa (co	ont) Number
Cen	ter looking Upstream	0	0	0	Procladius sp.	5
Cen	ter looking Left Bank	0	0	0	Tanytarsus sp.	25
Cen	ter looking Downstream	0	0	0	Bezzia/Palpomyia sp.	9
Cen	ter looking Right Bank	17	0	0	Ceratopogoninae	6
Left	Bank	0	0	0	Hemerodromia sp.	7
Righ	nt Bank	17	0	0	Mystacides alafimbriata	24
Tota	al	34			Pisidium sp.	16
					Oligochaeta	53
Sub	strate Composition				Hygrobates sp.	4
Perc	ent Fines	39			Lebertia sp.	32
Perc	ent Sand	0			Sperchon sp.	2
Perc	ent Gravel	29			Crangonyx sp.	3
Perc	ent Cobble	24			Ostracoda	29
Perc	ent Boulder	8			Nematoda	3
Perc	ent Bedrock/Hardpan	0			Turbellaria	25
Tota	al	100			Total Number	474

Site: SFPR-031051	State: Washington	Lat.:	46.680996
Stream: South Fork Palouse River	Date: 09 /25/2010	Long.:	-117.097929

Mean Wetted Width (m)	3.3
Est. Mean Depth (m)	1.1
Length (m)	150

Water Quality	Start	Finish
Temperature (°C)	11.62	13.41
pH	7	6.96
Dissolved Oxygen (mg/l)	6.49	6.48
Conductivity (µs/cm)	308.6	292.3
Physical Habitat		
Epifaunal Substrate	13	
Pool Substrate Charact.	11	
Pool Variability	11	
Sediment Deposition	19	
Channel Flow Status	18	
Channel Alteration	14	
Channel Sinuosity	10	
Bank Stability (L)	7	
Bank Stability (R)	7	
Vegetative Protection (L)	1	
Vegetative Protection (R)	1	
Riparian Vegetative Zone (L)	5	
Riparian Vegetative Zone (R)	5	
Total Score	122	

Fish	Number	Min. (mm)	Max. (mm)
Catostomus columbianus	4	59	130
Pimephales promelas	1	82	0
Ptychocheilus oregonensis	1	107	0
Richardsonius balteatus	36	61	113
Rhinichthys osculus	14	45	89
Total Number	56		
Total Biomass (g)	155		

Benthic Macroinvertebrate Taxa	Number
Callibaetis sp.	2
Coenagrion/Enallagma sp.	37
Taeniopteryx sp.	2
Sigara sp.	1
Dubiraphia sp.	15
Optioservus sp.	12
Sialis sp.	11
Brillia sp.	23
Chironomus sp.	13
Dicrotendipes sp.	14
Diplocladius sp.	1
Paratanytarsus sp.	7
Phaenopsectra sp.	6
Polypedilum sp.	17
Potthastia longimana gr.	10
Procladius sp.	10
Psectrotanypus sp.	1

Site: SFPR-031051 Stream: South Fork F	Palouse Ri	ver		State: WashingtonLat.:Date: 09 /25/2010Long	46.680996 g.: -117.097929
Densiometer	Down	Mid	Up	Benthic Macroinvertebrate Taxa (cont	t) Number
Center looking Upstream	0	0	0	Radotanypus sp.	2
Center looking Left Bank	0	0	15	Tanytarsus sp.	15
Center looking Downstream	0	0	0	Thienemannimyia gr. sp.	7
Center looking Right Bank	0	0	0	Ceratopogoninae	3
Left Bank	0	2	17	Dixella sp.	1
Right Bank	0	0	0	Neoplasta sp.	1
Total	34			Mystacides alafimbriata	7
				Ferrissia rivularis	5
Substrate Composition				Gyraulus sp.	113
Percent Fines	41			Physa sp.	9
Percent Sand	1			Radix auricularia	15
Percent Gravel	45			Musculium sp.	2
Percent Cobble	6			Pisidium sp.	91
Percent Boulder	3			Oligochaeta	8
Percent Bedrock/Hardpan	4			Lebertia sp.	69
Total	100			Sperchon sp.	4
				Crangonyx sp.	5
				Ostracoda	1
				Total Number	540

Site: SFPR-137547	State: Idaho	Lat.:	46.714705
Stream: South Fork Palouse River	Date: 09 /25/2010	Long.:	-117.024193

Reach Characteristics		
Mean Wetted Width (m)	4.3	
Est. Mean Depth (m)	0.9	
Length (m)	150	
Water Quality	Start	Finish
Temperature (°C)	14.63	13.43
pH	6.72	6.75

8.05

323.5

7.17

323.8

Dissolved Oxygen (mg/l) Conductivity (µs/cm)

Physical Habitat

•	
Epifaunal Substrate	7
Pool Substrate Charact.	8
Pool Variability	12
Sediment Deposition	7
Channel Flow Status	8
Channel Alteration	14
Channel Sinuosity	11
Bank Stability (L)	6
Bank Stability (R)	4
Vegetative Protection (L)	3
Vegetative Protection (R)	3
Riparian Vegetative Zone (L)	2
Riparian Vegetative Zone (R)	2
Total Score	87

Fish	Number	Min. (mm)	Max. (mm)
Catostomus columbianus	93	75	167
Catostomus macrocheilus	8	183	99
Richardsonius balteatus	96	34	91
Rhinichthys osculus	36	47	79
Total Number	233		
Total Biomass (g)	1,951		

Benthic Macroinvertebrate

Taxa NA

	Site: SFPR-137547				State: Idaho	Lat.:	46.714705
	Stream: South Fork Palouse River			Date: 09 /25/2010	Long.:	-117.024193	
Den	siometer	Down	Mid	Up			
Cen	ter looking Upstream	0	17	0			
Cen	ter looking Left Bank	0	16	10			
Cen	ter looking Downstream	0	14	14			
Cen	ter looking Right Bank	0	16	15			
Left	Bank	0	16	9			
Righ	nt Bank	0	17	7			
Tota	al	151					
Sub	strate Composition						
Perc	ent Fines	33					
Perc	ent Sand	13					
Perc	ent Gravel	28					
Perc	ent Cobble	8					
Perc	ent Boulder	4					
Perc	ent Bedrock/Hardpan	0					
Tota	al	86					

Site: SFPR-126994	State: Idaho	Lat.:	46.746714
Stream: South Fork Palouse River	Date: 09 /26/2010	Long.:	-116.927215

Reach Characteristics

Mean Wetted Width (m)	1.5
Est. Mean Depth (m)	0.7
Length (m)	150

Water Quality	Start	Finish
Temperature (°C)	11.56	11.57
- · · ·	6.23	6.36
pH		
Dissolved Oxygen (mg/l)	8.73	8.15
Conductivity (µs/cm)	71.6	72.2

Physical Habitat

Epifaunal Substrate	16
Pool Substrate Charact.	15
Pool Variability	17
Sediment Deposition	17
Channel Flow Status	14
Channel Alteration	16
Channel Sinuosity	14
Bank Stability (L)	5
Bank Stability (R)	5
Vegetative Protection (L)	1
Vegetative Protection (R)	1
Riparian Vegetative Zone (L)	2
Riparian Vegetative Zone (R)	2
Total Score	125

T*ah	Number	Min.	Max.
FISH	Number	(mm)	(mm)
Pimephales promelas	2	72	77
Oncorhynchus mykiss	4	83	182
Rhinichthys osculus	27	43	69
Total Number	33		
Total Biomass (g)	210		
Benthic Macroinvertebrate	e		

Taxa

Site: SFPR-126994				State: Idaho	Lat.:	46.746714
Stream: South Fork P	alouse Ri	ver		Date: 09 /26/2010	Long.:	-116.927215
Densiometer	Down	Mid	Up			
Center looking Upstream	0	0	0			
Center looking Left Bank	0	0	0			
Center looking Downstream	0	0	0			
Center looking Right Bank	0	0	0			
Left Bank	0	0	0			
Right Bank	0	0	0			
Total	0					
Substrate Composition						
Percent Fines	34					
Percent Sand	7					
Percent Gravel	57					
Percent Cobble	2					
Percent Boulder	0					
Percent Bedrock/Hardpan	0					
Total	100					

Site: SFPR-008523State: WashingtonLat.:46.736617Stream: Missouri Flat CreekDate: 09 /26/2010Long.:-117.17504

Mean Wetted Width (m)	1.5
Est. Mean Depth (m)	1.2
Length (m)	150

Water Quality	Start	Finish
Temperature (°C)	13.3	14.08
pH	7.32	7.34
Dissolved Oxygen (mg/l)	6.93	7.57
Conductivity (µs/cm)	464.3	490.4
Physical Habitat		
Epifaunal Substrate	16	
Pool Substrate Charact.	12	
Pool Variability	13	
Sediment Deposition	7	
Channel Flow Status	13	
Channel Alteration	5	
Channel Sinuosity	2	
Bank Stability (L)	3	
Bank Stability (R)	3	
Vegetative Protection (L)	1	
Vegetative Protection (R)	1	
Riparian Vegetative Zone (L)	1	
Riparian Vegetative Zone (R)	1	
Total Score	78	

Fish	Number	Min. (mm)	Max. (mm)
Catostomus columbianus	1	74	0
Catostomus macrocheilus	2	132	173
Ptychocheilus oregonensis	31	91	216
Richardsonius balteatus	21	58	96
Rhinichthys osculus	20	46	82
Total Number	75		
Total Biomass (g)	796		

Benthic Macroinvertebrate Taxa	Number
Aeshna sp.	3
Coenagrionidae	22
Brillia sp.	3
Cricotopus sp.	1
Cryptochironomus sp.	1
Dicrotendipes sp.	4
Limnophyes sp.	3
Parakiefferiella sp.	2
Paratanytarsus sp.	20
Phaenopsectra sp.	18
Psectrocladius sp.	1
Tanytarsus sp.	17
Thienemanniella sp.	1
Thienemannimyia gr. sp.	8
Ceratopogoninae	1
Hemerodromia sp.	1
Neoplasta sp.	3

Site: SFPR-008523				State: Washington Lat.:	46.736617
Stream: Missouri Flat Creek				Date: 09 /26/2010 Long.:	-117.17504
Densiometer	Down	Mid	Up	Benthic Macroinvertebrate Taxa (cont)	Number
Center looking Upstream	7	3	5	Tipula sp.	3
Center looking Left Bank	0	1	0	Cheumatopsyche sp.	4
Center looking Downstream	0	0	7	Ferrissia rivularis	1
Center looking Right Bank	0	1	0	Gyraulus sp.	4
Left Bank	0	0	17	Physa sp.	5
Right Bank	0	3	0	Radix auricularia	3
Total	44			Pisidium sp.	3
				Erpobdella sp.	30
Substrate Composition				Helobdella stagnalis	25
Percent Fines	32			Oligochaeta	285
Percent Sand	0			Acari	2
Percent Gravel	36			Lebertia sp.	5
Percent Cobble	14			Sperchon sp.	2
Percent Boulder	18			Crangonyx sp.	16
Percent Bedrock/Hardpan	0			Nematoda	1
Total	100			Turbellaria	28
				Total Number	526

Site: SFPR-030283	State: Washington	Lat.:	46.771865
Stream: Missouri Flat Creek	Date: 09 /26/2010	Long.:	-117.134637

Reach C	haracteristics
---------	----------------

Mean Wetted Width (m)	0.1
Est. Mean Depth (m)	0.3
Length (m)	150

Water Quality	Start	Finish
Temperature (°C)	9.1	8.43
pH	7.08	7.18
Dissolved Oxygen (mg/l)	2.55	2.02
Conductivity (µs/cm)	399	381.1

Epifaunal Substrate	1
Pool Substrate Charact.	2
Pool Variability	2
Sediment Deposition	3
Channel Flow Status	2
Channel Alteration	13
Channel Sinuosity	13
Bank Stability (L)	2
Bank Stability (R)	2
Vegetative Protection (L)	1
Vegetative Protection (R)	1
Riparian Vegetative Zone (L)	4
Riparian Vegetative Zone (R)	6
Total Score	52

		Min.	Max.
Fish	Number	(mm)	(mm)
Rhinichthys osculus	19	32	79
Total Number	19		
Total Biomass (g)	31		

Benthic Macroinvertebrates

Site: SFPR-030283				State: Washington	Lat.:	46.771865
Stream: Missouri Flat	t Creek			Date: 09 /26/2010	Long.:	-117.134637
Densionstan	D	Ma	T T			
Densiometer	Down	Mia	Up			
Center looking Upstream	0	0	0			
Center looking Left Bank	0	0	0			
Center looking Downstream	0	0	8			
Center looking Right Bank	0	0	8			
Left Bank	0	0	0			
Right Bank	0	0	8			
Total	24					
Substrate Composition						
Percent Fines	62					
Percent Sand	3					
Percent Gravel	14					
Percent Cobble	8					
Percent Boulder	3					
Percent Bedrock/Hardpan	10					
Total	100					

Site: SFPR-022859	State: Washington	Lat.:	46.729244
Stream: Paradise Creek	Date: 09 /24/2010	Long.:	-117.095902

Mean Wetted Width (m)	2.4
Est. Mean Depth (m)	0.9
Length (m)	150

Water Quality	Start	Finish
Temperature (°C)	13.82	14.24
pH	7.26	7.11
Dissolved Oxygen (mg/l)	7.1	8.12
Conductivity (µs/cm)	431.2	370

Epifaunal Substrate	12
Pool Substrate Charact.	13
Pool Variability	11
Sediment Deposition	18
Channel Flow Status	18
Channel Alteration	11
Channel Sinuosity	8
Bank Stability (L)	7
Bank Stability (R)	7
Vegetative Protection (L)	2
Vegetative Protection (R)	2
Riparian Vegetative Zone (L)	4
Riparian Vegetative Zone (R)	6
Total Score	119

Fish	Number	Min. (mm)	Max. (mm)
Catostomus columbianus	46	85	166
Catostomus macrocheilus	5	95	164
Ptychocheilus oregonensis	5	170	215
Richardsonius balteatus	26	70	98
Rhinichthys osculus	8	58	78
Total Number	90		
Total Biomass (g)	1,199		

Benthic Macroinvertebrate Taxa	Number
Baetis tricaudatus	5
Argia sp.	1
Coenagrionidae	7
Dubiraphia sp.	1
Optioservus sp.	496
Cryptochironomus sp.	1
Tanytarsus sp.	2
Thienemannimyia gr. sp.	4
Hemerodromia sp.	1
Lepidostoma sp.	2
Gyraulus sp.	1
Lymnaeidae	2
Pisidium sp.	11
Erpobdella sp.	1
Oligochaeta	3
Lebertia sp.	2

Percent Cobble

Percent Boulder

Total

Percent Bedrock/Hardpan

4 23

0

100

Site: SFPR-022859				State: Washington	Lat.:	46.729244
Stream: Paradise Creek			Date: 09 /24/2010	Long.:	-117.095902	
Densiometer	Down	Mid	Up	Benthic Macroinvertebrat	e Taxa (cont)	Number
Center looking Upstream	0	0	13	Hyalella sp.		1
Center looking Left Bank	0	0	0	Ostracoda		1
Center looking Downstream	0	0	0	Turbellaria		77
Center looking Right Bank	0	0	6	Total Number		619
Left Bank	0	0	0			
Right Bank	0	0	17			
Total	36					
Substrate Composition						
Percent Fines	13					
Percent Sand	9					
Percent Gravel	51					

Site: SFPR-121163	State: Washington	Lat.:	46.73677
Stream: Paradise Creek	Date: 09 /24/2010	Long.:	-117.06438

Mean Wetted Width (m)	3.4
Est. Mean Depth (m)	0.7
Length (m)	150

Water Quality	Start	Finish
Temperature (°C)	14.31	15.36
pH	7.07	7.07
Dissolved Oxygen (mg/l)	8.33	8.36
Conductivity (µs/cm)	405.9	501
Physical Habitat		
Epifaunal Substrate	6	
Pool Substrate Charact.	11	
Pool Variability	11	
Sediment Deposition	18	
Channel Flow Status	19	
Channel Alteration	11	
Channel Sinuosity	9	
Bank Stability (L)	4	
Bank Stability (R)	5	
Vegetative Protection (L)	2	
Vegetative Protection (R)	2	
Riparian Vegetative Zone (L)	1	
Riparian Vegetative Zone (R)	6	
Total Score	105	

Fish	Number	Min. (mm)	Max. (mm)
Catostomus columbianus	26	62	98
Catostomus macrocheilus	7	107	204
Ptychocheilus oregonensis	1	140	0
Richardsonius balteatus	3	71	98
Rhinichthys osculus	72	41	61
Total Number	109		
Total Biomass (g)	675		

Benthic Macroinvertebrate Taxa	Number
Baetis tricaudatus	17
Argia sp.	1
Coenagrion/Enallagma sp.	3
Optioservus sp.	284
Cricotopus bicinctus gr.	1
Cricotopus sp.	7
Cricotopus trifascia gr.	2
Dicrotendipes sp.	1
Parakiefferiella sp.	2
Paratanytarsus sp.	1
Potthastia longimana gr.	1
Tanytarsus sp.	4
Thienemanniella sp.	2
Thienemannimyia gr. sp.	3
Ceratopogoninae	2
Hemerodromia sp.	1
Simulium sp.	2

Site: SFPR-121163				State: Washington Lat.:	46.73677
Stream: Paradise Cre	Stream: Paradise Creek Date:		Date: 09 /24/2010 Long.:	-117.06438	
Densiometer	Down	Mid	Up	Benthic Macroinvertebrate Taxa (cont)	Number
Center looking Upstream	0	0	0	Cheumatopsyche sp.	7
Center looking Left Bank	0	0	1	Hydropsyche sp.	77
Center looking Downstream	0	0	0	Lepidostoma sp.	3
Center looking Right Bank	0	0	0	Physa sp.	35
Left Bank	0	0	12	Planorbella sp.	2
Right Bank	0	0	0	Radix auricularia	28
Total	13			Pisidium sp.	3
				Erpobdella sp.	1
Substrate Composition				Oligochaeta	68
Percent Fines	42			Acari	1
Percent Sand	2			Hyalella sp.	1
Percent Gravel	35			Ostracoda	1
Percent Cobble	4			Total Number	561
Percent Boulder	1				
Percent Bedrock/Hardpan	16				
Total	100				

Site: SFPR-080203	State: Washington	Lat.:	46.735872
Stream: Paradise Creek	Date: 09 /27/2010	Long.:	-117.052307

Reach Characteristics

Mean Wetted Width (m)	4.4
Est. Mean Depth (m)	1
Length (m)	150

Water Quality	Start	Finish
Temperature (°C)	18.04	18.76
pH	7.35	7.28
Dissolved Oxygen (mg/l)	7.61	7.02
Conductivity (µs/cm)	718.8	742.7
Physical Habitat		
Epifaunal Substrate	14	
Pool Substrate Charact,	11	

Pool Variability	13
Sediment Deposition	15
Channel Flow Status	14
Channel Alteration	14
Channel Sinuosity	8
Bank Stability (L)	3
Bank Stability (R)	4
Vegetative Protection (L)	1
Vegetative Protection (R)	1
Riparian Vegetative Zone (L)	5
Riparian Vegetative Zone (R)	3
Total Score	106

Fish	Number	Min. (mm)	Max. (mm)
Catostomus columbianus	79	76	238
Catostomus macrocheilus	64	104	289
Ptychocheilus oregonensis	5	129	227
Richardsonius balteatus	156	69	171
Rhinichthys osculus	112	48	72
Total Number	416		
Total Biomass (g)	3,882		

Benthic Macroinvertebrate Taxa	Number
Aeshna sp.	2
Argia sp.	1
Coenagrionidae	25
Cryptochironomus sp.	4
Phaenopsectra sp.	1
Polypedilum sp.	1
Thienemannimyia gr. sp.	1
Gyraulus sp.	3
Physa sp.	13
Radix auricularia	18
Pisidium sp.	99
Erpobdella sp.	22
Oligochaeta	226
Lebertia sp.	1
Ostracoda	4
Nematoda	2
Turbellaria	1
Total	424

Total

100

Site: SFPR-080203				State: Washington	Lat.:	46.735872
Stream: Paradise Cre	ek			Date: 09 /27/2010	long·	-117 052307
	CR			<i>Date: 03 / 27 / 2010</i>	20115	11/.03230/
Densiometer	Down	Mid	Up			
Center looking Upstream	16	16	15			
Center looking Left Bank	7	13	17			
Center looking Downstream	12	11	17			
Center looking Right Bank	13	14	17			
Left Bank	0	11	0			
Right Bank	0	11	17			
Total	207					
Substrate Composition						
Percent Fines	22					
Percent Sand	2					
Percent Gravel	32					
Percent Cobble	0					
Percent Boulder	0					
Percent Bedrock/Hardpan	44					

Site: SFPR-108562	State: Idaho	Lat.:	46.722794
Stream: Paradise Creek	Date: 09 /23/2010	Long.:	-116.994418

			T-
NAPA,			
h	A		

Reach Characteristics			Fish	Number	Min. (mm)	Max. (mm)
Mean Wetted Width (m)	4.7		Catostomus columbianus	31	92	171
Est. Mean Depth (m)	1.1		Catostomus macrocheilus	12	96	126
Length (m)	150		Richardsonius balteatus	91	51	128
			Rhinichthys osculus	119	38	85
Water Quality	Start	Finish	Total Number	253		
Temperature (°C)	11.62		Total Biomass (g)	1,097		
pH	6.97			,		
Dissolved Oxygen (mg/l)	1.65		Benthic Macroinvertebrate Ta	xa	Number	
Conductivity (µs/cm)	401.7		Callibaetis sp.		1	
			Aeshna sp.		1	
Physical Habitat			Coenagrionidae		57	
Epifaunal Substrate	8		Sigara sp.		4	
Pool Substrate Charact.	11		Acricotopus sp.		2	
Pool Variability	11		Chironomus sp.		152	
Sediment Deposition	18		Cladopelma sp.		1	
Channel Flow Status	15		Cricotopus sp.		6	
Channel Alteration	13		Cryptochironomus sp.		1	
Channel Sinuosity	10		Dicrotendipes sp.		17	
Bank Stability (L)	7		Endochironomus sp.		9	
Bank Stability (R)	7		Limnophyes sp.		2	
Vegetative Protection (L)	8		Micropsectra sp.		2	
Vegetative Protection (R)	8		Paratanytarsus sp.		13	
Riparian Vegetative Zone (L)	2		Psectrotanypus sp.		33	
Riparian Vegetative Zone (R)	3		Pseudochironomus sp.		1	
Total Score	121		Tanytarsus sp.		3	
			Bezzia/Palpomyia sp.		2	

Site: SFPR-108562 State: lo		e: Idaho	Lat.:	46.722794		
Stream: Paradise Creek	ream: Paradise Creek Date: 09 /23/2010		: 09 /23/2010	Long.:	-116.994418	
Densiometer	Down	Mid	Up	Benthic Macroinvertebrate	e Taxa (cont)	Number
Center looking Upstream	16	0	1	Pericoma/Telmatoscopus sp		2
Center looking Left Bank	17	0	12	Ptilostomis sp.		2
Center looking Downstream	16	0	11	Ferrissia rivularis		6
Center looking Right Bank	16	0	0	Gyraulus sp.		15
Left Bank	16	0	13	Lymnaeidae		1
Right Bank	16	0	0	Sphaeriidae		3
Total	134			Erpobdella sp.		2
				Oligochaeta		60
Substrate Composition				Limnesia sp.		54
Percent Fines	47			Unionicola sp.		2
Percent Sand	4			Nematoda		5
Percent Gravel	43			Total Number		459
Percent Cobble	6					
Percent Boulder	0					
Percent Bedrock/Hardpan	0					
Total	100					

Site: SFPR-026642	State: Idaho	Lat.:	46.733622
Stream: Paradise Creek	Date: 09 /23/2010	Long.:	-116.980223

Reach	Characteristics
Iteach	Chiai acter istics

Mean Wetted Width (m)	5.4	
Est. Mean Depth (m)	0.5	
Length (m)	150	
Water Quality Temperature (°C)	Start 12.68	Finish
pH Dissolved Oxygen (mg/l) Conductivity (us/cm)	6.91 5.61 231 3	
conductivity (µs/ciii)	231.3	

Physical Habitat Epifaunal Substrate 9 Pool Substrate Charact. 8 Pool Variability 11 Sediment Deposition 18 Channel Flow Status 20 **Channel Alteration** 13 **Channel Sinuosity** 6 8 Bank Stability (L) Bank Stability (R) 8 Vegetative Protection (L) 9 Vegetative Protection (R) 9 Riparian Vegetative Zone (L) 2 2 Riparian Vegetative Zone (R) **Total Score** 123

	Min.	Max.
Number	(mm)	(mm)
18	76	148
81	53	128
184	36	82
283		
1,101		
	Number 18 81 184 283 1,101	Min. Number (mm) 18 76 81 53 184 36 283 1,101

Benthic Macroinvertebrate Taxa

Site: SFPR-026642				State: Idaho	Lat.:	46.733622
Stream: Paradise Creel	٢			Date: 09 /23/2010	Long.:	-116.980223
Densiometer	Down	Mid	Up			
Center looking Upstream	9	0	0			
Center looking Left Bank	16	2	0			
Center looking Downstream	13	15	0			
Center looking Right Bank	0	6	0			
Left Bank	0	9	1			
Right Bank	0	5	0			
Total	76					
Substrate Composition						
Percent Fines	71					
Percent Sand	3					
Percent Gravel	4					
Percent Cobble	1					
Percent Boulder	1					
Percent Bedrock/Hardpan	20					
Total	100					

Site: SFPR-081483	State: Idaho	Lat.:	46.756036
Stream: Paradise Creek	Date: 09 /27/2010	Long.:	-116.962549

Reach Characteristics			Fish	Number	(mm)	(mm)
Mean Wetted Width (m)	3.5		Rhinichthys osculus	17	54	70
Est. Mean Depth (m)	0.3		Total Number	17		
Length (m)	150		Total Biomass (g)	28		
Water Quality	Start	Finish	Benthic Macroinvertebrate Taxa			
Temperature (°C)	14.55	14.93	NA			
pH	6.77	6.73				
Dissolved Oxygen (mg/l)	0.67	0.91				
Conductivity (µs/cm)	294.2	303.3				
Physical Habitat						
Epifaunal Substrate	6					
Pool Substrate Charact.	7					
Pool Variability	4					
Sediment Deposition	4					

Channel Flow Status	5
Channel Alteration	12
Channel Sinuosity	8
Bank Stability (L)	7
Bank Stability (R)	7
Vegetative Protection (L)	1
Vegetative Protection (R)	1
Riparian Vegetative Zone (L)	1
Riparian Vegetative Zone (R)	1
Total Score	64

Max.

Min.

Site: SFPR-081483	State: Idaho	Lat.:	46.756036
Stream: Paradise Creek	Date: 09 /27/2010	Long.:	-116.962549

Densiometer	Down	Mid	Up
Center looking Upstream	0	0	0
Center looking Left Bank	0	0	0
Center looking Downstream	0	0	0
Center looking Right Bank	0	0	0
Left Bank	0	0	0
Right Bank	0	0	0
Total	0		
Substrate Composition			
Percent Fines	90		
Percent Sand	0		
Percent Gravel	0		
Percent Cobble	0		
Percent Boulder	0		
Percent Bedrock/Hardpan	10		
Total	100		

Site: SFPR-012619 State: Washington Lat.: 46.674303 Stream: Dry Fork Creek Date: 09 /25 /2010 Long.: -117.19442

					Min.	Max.
Reach Characteristics			Fish	Number	(mm)	(mm)
Mean Wetted Width (m)	0.6		No Fish Collected	NA	NA	NA
Est. Mean Depth (m)	0.1		Total Number	NA		
Length (m)	150		Total Biomass (g)	NA		
Water Quality	Start	Finish	Benthic Macroinvertebrate Taxa			
Temperature (°C)	10.57	10.7	NA			
pH	6.62	6.71				
Dissolved Oxygen (mg/l)	5.88	5.78				
Conductivity (µs/cm)	256.8	250.9				
Physical Habitat						
Epifaunal Substrate	2					
Pool Substrate Charact.	1					
Pool Variability	1					
Sediment Deposition	13					
Channel Flow Status	2					
Channel Alteration	1					
Channel Sinuosity	0					
Bank Stability (L)	8					
Bank Stability (R)	8					
Vegetative Protection (L)	1					
Vegetative Protection (R)	1					
Riparian Vegetative Zone (L)	1					

Riparian Vegetative Zone (R)

Total Score

1

40

Site: SFPR-012619				State: Washington	Lat.:	46.674303
Stream: Dry Fork Cree	•k			Date: 09 /25/2010	Long.:	-117.19442
Densiometer	Down	Mid	Up			
Center looking Upstream	0	0	0			
Center looking Left Bank	0	0	0			
Center looking Downstream	0	0	0			
Center looking Right Bank	0	0	0			
Left Bank	0	0	0			
Right Bank	0	0	0			
Total	0					
Substrate Composition						
Percent Fines	100					
Percent Sand	0					
Percent Gravel	0					
Percent Cobble	0					
Percent Boulder	0					
Percent Bedrock/Hardpan	0					
Total	100					

APPENDIX D. BENTHIC MACROINVERTEBRATE METRIC AND BIOTIC INDEX SUMMARY

Stream	SF Palouse River	SF Palouse River	SF Palouse River	SF Palouse River
Station Number	SFPR-098891	SFPR-106827	SFPR-057675	SFPR-123211
Dominance Measures				
Dominant Taxon	Tricorythodes sp.	Lebertia sp.	Oligochaeta	Dicrotendipes sp.
Dominant Abundance	2272	270.32 Cricotopus trifascia	528	480.24
2nd Dominant Taxon	Optioservus sp.	gr.	Optioservus sp.	Oligochaeta
2nd Dominant Abundance	1424	226.72	388	219.42
3rd Dominant Taxon	Turbellaria	Crangonyx sp.	Lebertia sp.	Lebertia sp.
3rd Dominant Abundance	1056	165.68	348	132.48
% Dominant Taxon	23.55	21.99	20.47	24.47
% 2 Dominant Taxa	38.31	40.43	35.5	35.65
% 3 Dominant Taxa	49.25	53.9	48.99	42.41
Richness Measures	20	24	24	22
Species Richness	38	34	34	32
EPT Richness	8	6	3	3
Ephemeroptera Richness	3	3	l	l
Plecoptera Richness	0	0	0	l
Trichoptera Richness	5	3	2	1
Chironomidae Richness	10	11	13	13
Oligochaeta Richness Non-Chiro. Non-Olig.	1	1	1	1
Richness	27	22	20	18
Rhyacophila Richness	0	0	0	0
Community Composition				
% Ephemeroptera	25.21	1.06	3.41	0.21
% Plecoptera	0	0	0	0.42
% Trichoptera	9.12	1.77	3.57	5.06
% EPT	34.33	2.84	6.98	5.7
% Coleoptera	20.73	3.19	16.28	4.64
% Diptera	4.98	37.06	21.71	50
% Oligochaeta	8.62	3.55	20.47	11.18
% Baetidae	1.66	0.35	3.41	0.21
% Brachycentridae	0	0	0	0
% Chironomidae	4.15	32.27	19.53	45.36
% Ephemerellidae	0	0	0	0
% Hydropsychidae	0	0.18	0.31	0
% Odonata	6.8	9.75	0.93	4.22
% Perlidae	0	0	0	0
Stream	SF Palouse River	SF Palouse River	SF Palouse River	SF Palouse River
---------------------------------	---------------------	---------------------	---------------------	---------------------
Station Number	SFPR-098891	SFPR-106827	SFPR-057675	SFPR-123211
Community Composition				
% Perlidae	0	0	0	0
% Pteronarcyidae	0	0	0	0
% Simuliidae	0.17	1.95	0	0
Functional Group Composition				
% Filterers	1.66	3.72	2.64	8.65
% Gatherers	43.12	30.32	46.67	59.49
% Predators	29.19	41.84	34.73	26.79
% Scrapers	18.57	3.19	15.66	3.8
% Shredders	6.14	20.39	0.16	1.27
% Piercer-Herbivores	0.5	0.53	0	0
% Unclassified	0.83	0	0.16	0
Filterer Richness	4	4	3	2
Gatherer Richness	12	13	14	13
Predator Richness	10	11	12	12
Scraper Richness	5	2	3	1
Shredder Richness	4	3	1	4
Piercer-Herbivore Richness	1	1	0	0
Unclassified	2	0	1	0
Diversity/Evenness Measures				
Shannon-Weaver H' (log 10)	1.18	1.11	1.14	1.19
Shannon-Weaver H' (log 2)	3.93	3.69	3.78	3.97
Shannon-Weaver H' (log e)	2.72	2.56	2.62	2.75
Margalef's Richness	4.03	4.64	4.2	4.09
Pielou's J'	0.75	0.73	0.74	0.79
Simpson's Heterogeneity	0.89	0.88	0.89	0.9
Biotic Indices				
% Indiv. w/ HBI Value	89.05	73.76	84.5	90.08
Hilsenhoff Biotic Index	5.23	6.65	6.28	7.15
% Indiv. w/ MTI Value	67.33	35.82	50.54	55.7
Metals Tolerance Index	4.12	3.97	4.33	4.43
% Indiv. w/ FSBI Value	39.3	8.69	19 84	5.49
Fine Sediment Biotic Index	20	25	23	9
FSBI - average	0.53	0.74	0.68	0.28

Stream Station Number	SF Palouse River SFPR-098891	SF Palouse River SFPR-106827	SF Palouse River SFPR-057675	SF Palouse River SFPR-123211
Biotic Indices				
FSBI - weighted average	3.64	3.8	3.48	3.46
% Indiv. w/ TPM Value	48.76	27.66	22.33	10.97
Temp. Pref. Metric - average	1	1.12	1.06	0.47
TPM - weighted average	2.28	2.54	3.17	2.27
Other Metrics				
Long-Lived Taxa Richness	2	2	2	3
Clinger Richness	20	12	8	8
% Clingers	63.02	28.01	23.57	11.39
Intolerant Taxa Richness	0	0	0	1
% Tolerant Individuals	1.02	8.27	7.39	5.83
% Tolerant Taxa	15.79	11.76	29.41	31.25
Coleoptera Richness	3	2	2	2

Stream	SF Palouse River	Paradise Creek	Paradise Creek	Paradise Creek
Station Number	SFPR-031051	SFPR-108562	SFPR-022859	SFPR-121163
Dominance Measures				
Dominant Taxon	Gyraulus sp.	Chironomus sp.	Optioservus sp.	Optioservus sp.
Dominant Abundance	226	228	1984	3408
2nd Dominant Taxon	Pisidium sp.	Oligochaeta	Turbellaria	Hydropsyche sp.
2nd Dominant Abundance	182	90	308	924
3rd Dominant Taxon	Lebertia sp.	Coenagrionidae	Pisidium sp.	Oligochaeta
3rd Dominant Abundance	138	85.5	44	816
% Dominant Taxon	20.93	33.12	80.13	50.62
% 2 Dominant Taxa	37.78	46.19	92.57	64.35
% 3 Dominant Taxa	50.56	58.61	94.35	76.47
Richness Measures				
Species Richness	35	29	19	29
EPT Richness	3	2	2	4
Ephemeroptera Richness	1	1	1	1
Plecoptera Richness	1	0	0	0
Trichoptera Richness	1	1	1	3
Chironomidae Richness	13	13	3	10
Oligochaeta Richness	1	1	1	1
Non-Chiro. Non-Olig. Richness	21	15	15	18
Rhyacophila Richness	0	0	0	0
Community Composition				
% Ephemeroptera	0.37	0.22	0.81	3.03
% Plecoptera	0.37	0	0	0
% Trichoptera	1.3	0.44	0.32	15.51
% EPT	2.04	0.65	1.13	18.54
% Coleoptera	5	0	80.29	50.62
% Diptera	24.26	53.59	1.29	5.17
% Oligochaeta	1.48	13.07	0.48	12.12
% Baetidae	0.37	0.22	0.81	3.03
% Brachycentridae	0	0	0	0
% Chironomidae	23.33	52.72	1.13	4.28
% Ephemerellidae	0	0	0	0
% Hydropsychidae	0	0	0	14.97
% Odonata	6.85	12.64	1.29	0.71

Stream	SF Palouse River	Paradise Creek	Paradise Creek	Paradise Creek
Station Number	SFPR-031051	SFPR-108562	SFPR-022859	SFPR-121163
Community Composition				
% Perlidae	0	0	0	0
% Pteronarcyidae	0	0	0	0
% Simuliidae	0	0	0	0.36
Functional Group Composition				
% Filterers	20	1.31	2.1	16.58
% Gatherers	15.56	55.12	1.78	16.76
% Predators	26.85	34.2	15.02	1.96
% Scrapers	26.85	4.79	80.61	56.86
% Shredders	7.78	3.27	0.32	2.32
% Piercer-Herbivores	0.19	0.87	0	0
% Unclassified	0	0.44	0.16	0.53
Filterer Richness	3	2	2	5
Gatherer Richness	12	11	5	9
Predator Richness	10	9	7	6
Scraper Richness	5	3	3	2
Shredder Richness	3	2	1	4
Piercer-Herbivore Richness	1	1	0	0
Unclassified	0	1	1	2
Diversity/Evenness Measures				
Shannon-Weaver H' (log 10)	1.2	0.99	0.35	0.78
Shannon-Weaver H' (log 2)	3.99	3.29	1.17	2.58
Shannon-Weaver H' (log e)	2.77	2.28	0.81	1.79
Margalef's Richness	4.87	4.28	2.3	3.18
Pielou's J'	0.78	0.68	0.28	0.53
Simpson's Heterogeneity	0.9	0.84	0.34	0.7
Biotic Indices				
% Indiv. w/ HBI Value	83.15	86.93	99.52	94.47
Hilsenhoff Biotic Index	6.81	8.87	4.96	5.63
% Indiv. w/ MTI Value	52.78	64.92	96.77	73.62
Metals Tolerance Index	3.56	3.78	4.8	4.99
% Indiv. w/ FSBI Value	4.26	0.44	81.1	69.16
Fine Sediment Biotic Index	4	5	13	23
FSBI - average	0.11	0.17	0.68	0.79

Stream Station Number	SF Palouse River SFPR-031051	Paradise Creek SFPR-108562	Paradise Creek SFPR-022859	Paradise Creek SFPR-121163
Biotic Indices				
FSBI - weighted average	2.04	5	3.02	3.47
% Indiv. w/ TPM Value	18.52	2.4	82.71	73.26
Temp. Pref. Metric - average	0.49	0.45	1.16	1.52
TPM - weighted average	2.78	4.36	3.01	2.91
Other Metrics				
Long-Lived Taxa Richness	5	3	2	2
Clinger Richness	10	7	7	13
% Clingers	39.63	9.15	82.07	83.07
Intolerant Taxa Richness	2	0	1	1
% Tolerant Individuals	18.93	22.22	0.53	1.7
% Tolerant Taxa	28.57	41.38	31.58	20.69
Coleoptera Richness	2	0	2	1

Stream Station Number	Paradise Creek SFPR-080203	Missouri Flat SFPR-008523
Dominance Measures		
Dominant Taxon	Oligochaeta	Oligochaeta
Dominant Abundance	226	541.5
2nd Dominant Taxon	Pisidium sp.	Erpobdella sp.
2nd Dominant Abundance	99	57
3rd Dominant Taxon	Coenagrionidae	Turbellaria
3rd Dominant Abundance	25	53.2
% Dominant Taxon	53.3	54.18
% 2 Dominant Taxa	76.65	59.89
% 3 Dominant Taxa	82.55	65.21
Richness Measures		
Species Richness	17	33
EPT Richness	0	1
Ephemeroptera Richness	0	0
Plecoptera Richness	0	0
Trichoptera Richness	0	1
Chironomidae Richness	4	12
Oligochaeta Richness	1	1
Non-Chiro. Non-Olig. Richness	12	20
Rhyacophila Richness	0	0
Community Composition		
% Ephemeroptera	0	0
% Plecoptera	0	0
% Trichoptera	0	0.76
% EPT	0	0.76
% Coleoptera	0	0
% Diptera	1.65	16.54
% Oligochaeta	53.3	54.18
% Baetidae	0	0
% Brachycentridae	0	0
% Chironomidae	1.65	15.02
% Ephemerellidae	0	0
% Hydropsychidae	0	0.76
% Odonata	6.6	4.75

Stream	Paradise Creek	Missouri Flat
Station Number	SFPR-080203	SFPR-008523
Community Composition		
% Perlidae	0	0
% Pteronarcyidae	0	0
% Simuliidae	0	0
Functional Group Composition		
% Filterers	23.35	4.56
% Gatherers	54.25	63.12
% Predators	8.73	19.39
% Scrapers	4.01	5.32
% Shredders	0.24	1.33
% Piercer-Herbivores	0	0
% Unclassified	5.19	5.7
Filterer Richness	1	3
Gatherer Richness	2	8
Predator Richness	8	13
Scraper Richness	3	4
Shredder Richness	1	3
Piercer-Herbivore Richness	0	0
Unclassified	1	1
Diversity/Evenness Measures		
Shannon-Weaver H' (log 10)	0.65	0.87
Shannon-Weaver H' (log 2)	2.16	2.91
Shannon-Weaver H' (log e)	1.5	2.01
Margalef's Richness	2.64	4.63
Pielou's J'	0.53	0.58
Simpson's Heterogeneity	0.65	0.69
Biotic Indices		
% Indiv. w/ HBI Value	90.33	91.83
Hilsenhoff Biotic Index	7.48	7.3
% Indiv. w/ MTI Value	8.96	31.37
Metals Tolerance Index	3.29	3.53
% Indiv. w/ FSBI Value	0	1.52
Fine Sediment Biotic Index	-99	10
FSBI - average	-99	0.3

Stream	Paradise Creek	Missouri Flat
Station Number	SFPR-080203	SFPR-008523
Biotic Indices		
FSBI - weighted average	-99	2.75
% Indiv. w/ TPM Value	0.71	6.46
Temp. Pref. Metric - average	0.35	0.7
TPM - weighted average	2	2.47
Other Metrics		
Long-Lived Taxa Richness	2	3
Clinger Richness	5	8
% Clingers	8.49	7.03
Intolerant Taxa Richness	0	0
% Tolerant Individuals	70.76	34.43
% Tolerant Taxa	35.29	24.24
Coleoptera Richness	0	0

APPENDIX E. REVIEWER COMMENT MATRIX

Reviewer	Page	Location	Comment/Suggestion	Tt Response
E.	All	General	Double-check that articles cited in the text are in	Completed as
Snouwaert			the references. Will specifically point out ones	Requested
& C.Niemi			noticed missing.	
E.	Results	Sections	I realize this is a results section so you are strictly	Completed as
Snouwaert	section	3.1 and	reporting just the "results" of the review of each	Requested; redundancy
& C.Niemi		3.2	literature piece: however it reads awkwardly and it	removed, re-organized
			is redundant because of this. I think it would be	to begin with Palouse
			better to move this information to an appendix as an	River discussion and
			annotated bibliography. Each literature piece would	transition to South Fork
			have a heading and then the key results you pulled	Palouse River drainage
			from it. Then in the results section I suggest	discussion.
			synthesizing the information more to describe the	
			watershed without the redundancy (more like in the	
			discussion section). If three studies stated the same	
			thing say it once and reference each. Keep similar	
			geographic information together. For example start	
			by talking about the mouth and working up to the	
			rest of the watershed but put most emphasis on the	
			South Fork sub-basin. This would help the flow of	
			these sections for the reader. At first read I didn't	
			realize that each paragraph was about a different	
			report and that's why there were so many repeats of	
			information. I suspect other readers will have	
			similar experiences.	
E.	1-1	1 st para	Russell and Ring not in references	Completed as
Snouwaert				Requested
& C.Niemi		o rd		~
E.	1-1	3 rd para,	Discusses flow between 1898 and 1954 but how	Completed as
Snouwaert		4 th sent.	does that compare to now. USGS gage is still	Requested
& C.Niemi		-	operating.	~
J. Carroll	1-1	Last para	Wheat crops occupied half of Whitman County by	Completed as
	1.0	and	"1890 […] ?	Requested
J. Carroll	1-3	2 nd para	Change "Groundwater contribution to surface water	Completed as
			streams is particularly significant during low flow	Requested
			portions of the year to "Groundwater influence	
			to surface water streams can be significant during	
			IOW HOW The groundwater contributions in the	
			during the low flow coordinate but may have been	
			during the low now season, but may have been	
			significant in the past, when groundwater levels	
I Carroll	13	2 nd noro	The last sentence is an undecumented statement	Completed as
J. Calloll	1-5	2 para	and I believe the assertion that seasonal timing of	Requested
			water withdrawals influences surface water	Requested
			availability is incorrect. Probably should just delete	
			sentence.	

Reviewer	Page	Location	Comment/Suggestion	Tt Response
J. Carroll	1-3	Section 1.3, 1 st para	TMDL water monitoring and modeling does show degraded water quality conditions during low flow conditions, and it shows that the source of pollution is almost entirely from municipal waste water discharge. It does not demonstrate that riparian or instream habitat degradation or heavily used groundwater resources are the sources of degraded water quality conditions.	Completed as Requested
E. Snouwaert & C.Niemi	1-2	Section 1.2, 1 st sent.	Reference of Carroll & Snouwaert (2009) would be better than the GW-SW interaction report (that's the one listed as Ecology 2009 in the references).	Completed as Requested
E. Snouwaert & C.Niemi	1-2	Sect. 1.2, 2 nd paragraph	From 3 rd sentence on change to: EPA and the state of Washington considered water quality requirements for salmonids, char, other aquatic organisms, and the requirements for survival of various life stages in developing the current criteria for these parameters (Ecology 2006).	Completed as Requested
E. Snouwaert & C.Niemi	1-2	3 rd paragraph	"The 1998 303(d) list for Idahoportion of drainage." Should be moved to follow the 2 nd paragraph so discussion of impairments is discussed together.	Completed as Requested
E. Snouwaert & C.Niemi	1-3	2 nd paragraph	"The landscape in the" Paragraph should be moved to the Project Setting section. This would also result in keeping the groundwater paragraphs together and better transition.	Completed as Requested
E. Snouwaert & C.Niemi	1-3	Sec. 1.3, 3 rd sent.	The temperature standard referenced is wrong. The SFPR temperature is a 7-day average daily maximum of 17.5 °C.	Completed as Requested
E. Snouwaert & C.Niemi	1-3	Sec. 1.3, 4 th sent.	Change to and add a sentence: A thorough literature review that examines historic information describing biological communities, changes to physical habitat, and available information describing water quality conditions for pre-European, 1975 to current, and current conditions was conducted. This review will provide information that will help determine the natural conditions of the system, and how the system has changed over time. The biological descriptions may provide the greatest evidence for historic conditions derived from autecological characteristics of biological communities and tolerance to environmental gradients.	Completed as Requested
E. Snouwaert & C.Niemi	1-4	Question 3	Move final parentheses to after "condition" before "both" [waterbody (Ecology will provide a description for the range of estimated natural conditions), both currently and historically?]	Completed as Requested
E. Snouwaert & C.Niemi	1-4	Paragraph under question 3	Change to: A description of the environmental conditions during 3 important periods related to the above questions was developed by summarizing information gathered from existing knowledge and generating data describing current conditions. The time periods are :	Completed as Requested

Reviewer	Page	Location	Comment/Suggestion	Tt Response
E.	1-4	Last	Change to:	Completed
Snouwaert		paragraph	These 3 periods along a timeline, beginning with Pre-	as Requested
& C.Niemi			European settlement, were compared in order to determine	
			(1) the extent of change in biotic communities that may	
			have directly and indirectly been influenced by arrival of	
			Europeans and (2) the effects of the development of the	
			regional economy on aquatic resources.	
E.	2-1	2 nd	Change to:	Completed
Snouwaert		paragraph, 1 st	The web based survey and library search methods were	as Requested
& C.Niemi		sent.	more consistent in approach and expected results.	
E.	2-2	Sec. 2.1.3	"like Ecology's EIM" were other databases also	Completed
Snouwaert			accessed? If so what were they, where are they referenced	as Requested
& C.Niemi		and a second	so we can access them too?	
E.	2-2	Sec. 2.1.5, 2 nd	Unclear sentence. The time periods partitioned the	Completed
Snouwaert		sent.	summaries?	as Requested
& C.Niemi		1 st ond		<u> </u>
E.	2-3	1^{st} para, 2^{st}	Unclear sentence. 1) this is the technical report; 2) reads	Completed
Snouwaert		sent. (Sec.	as if it's going to be transferred to the interpretation of	as Requested
& C.Niemi	2.2	2.1.5)	limitations.	0 1 1
E.	2-3	Sec. 2.1.6, 1	Were presented or are presented? Where - In the results	Completed
Snouwaert		sent.	section?	as Requested
& C.Niemi	2.2	Sec. 216	This is the Final Technical Danast	Completed
E. Snouwoort	2-3	Sec. 2.1.0,	This is the Final Technical Report	Completed
& C Niomi		4th sent.		as Requested
E C.Nicilli	23	Section 2.2	The 2 nd half of this paragraph is confusing. It almost	Completed
L. Spouwaart	2-3	2 nd para last	sounds as if 30 sites were sampled when only 20 were	as Requested
& C Niemi		2 para, last	Sounds as if its 20 plus 10	as Requested
F	2_3	Section 2.2	Change to:	Completed
L. Snouwaert	2-3	2^{nd} para last	The final survey design addressed factors that affect fish	as Requested
& C Niemi		sentence	populations and provided a basis for assessing the	us requested
		sentence	instream biota of the system.	
E.	2-4	1 st para	Define/explain "oversample"	Completed
Snouwaert		1 pana		as Requested
& C.Niemi				1
E.	2-5	1 st para	Ecology reference needs to be clarified. In the References	Completed
Snouwaert		•	that is the GW/SW interaction study (probably doesn't	as Requested
& C.Niemi			provide this guidance and isn't draft).	•
E.	2-5	Site	Assume that "not exceed 2000m" is for reaches with mean	Completed
Snouwaert		Verification	bankfull width greater than 100m. Sounds like it's also for	as Requested
& C.Niemi		and layout	reaches less than 8m. Clarify.	
E.	2-5	Fish	All fish were returned to the stream? Thought some were	Completed
Snouwaert		Community	kept.	as Requested
& C.Niemi				
E.	2-6	Only	Ecology 2009 reference seems wrong again. See 3	Completed
Snouwaert		paragraph	comments up.	as Requested
& C.Niemi				
E.	3-1	Sec. 3.1.1, 3 rd	"are" should be "area"study area prior to 1917	Completed
Snouwaert		para, 1 st sent.		as Requested
& C.Niemi				

Reviewer	Page	Location	Comment/Suggestion	Tt Response
E.	3-1	Sect. 3.1.2	We know that artesian wells occurred, groundwater was at	Completed
Snouwaert		Water	higher levels, and there was more shade. Can we make	as Requested
& C.Niemi		Quality	some general statements about temperature or DO? Confer	
			with Jim Carroll on this. Palouse Basin Aquifer	
			Committee (PBAC) may be able to provide info about the	
		nd	water levels and artesian wells.	
E.	3-2	Sec. 3.1.3, 2 nd	Is Ross Cox in the Ray reference in the Butler reference?	Completed
Snouwaert		paragraph		as Requested
& C.Niemi		0	Defente 1 de Dec 14 Contractor The Dec	C
E. Snouwoort		sections 5.1	European section is all focused on Delayers mainstern and	Completed
& C Niomi			then 1975 to Current jumps to mostly South Fork Palouse	as Requested
			I realize that this is due to the limited information about	
			the South Fork in the pre-European literature but to the	
			reader it seems that the change between sections is more to	
			focus on a different area than a different time period. This	
			section would benefit from the suggestion to move the	
			straight literature results to an annotated bibliography and	
			use the body portion of document to make the connection	
			and continuity for the reader. Use the literature to describe	
			the watershed from mouth to South Fork. State when info	
			lacks but make speculations based on the rest of what is	
			known.	
E.	3-3	Sec. 3.2.1, 3 rd	Retained – when (during what time period in the past) did	Completed
Snouwaert		para, 4 th sent.	these areas retain water during high flow periods? Not	as Requested
& C.Niemi			clear – section is on 1975 to current but it sounds as if this	
			was prior to that.	
E.	3-3	Sect $3.2.1, 4^{th}$	Awkward sentence – not really clear on what it means for	Completed
Snouwaert		para, 3 rd sent.	periphyton and why that is important.	as Requested
E C.Niemi	2.2	Sec. 2.2.1.5 th	Is this saying that livestock and removed of vegetation	Completed
E. Spouwaert	3-3	2^{nd}	is this saying that investock and removal of vegetation	as Requested
& C Niemi		para., 2	erosion and vegetation removal? Unclear the intended	as Requested
a chitin		sent.	meaning	
E.	3-3	Sec. 3.2.1. 6 th	Clarify that the various stations on Paradise Creek on in	Completed
Snouwaert		para. 1 st	Idaho.	as Requested
& C.Niemi		sentence		
E.	3-3 -	Sec. 3.2.1,	• An example of why integrating the results would	Completed
Snouwaert	3-4	Paragraph 5	make this section clearer. These two paragraphs	as Requested
& C.Niemi		and 7	overlap and repeat a lot. Appears redundant and this	
			would benefit from combining. Could include it in the	
			annotated bibliography with headings to distinguish	
			as different literature pieces.	
			• Seems this section would benefit from starting with	
			discussion of whole basin and narrowing down to	
			South Fork and discussing each topic such as:	
			riparian, landuse, stream morphology, flow. Keep	
			each topic together rather than jumping around for	
			each publication. Hard for the reader to get a complete	
			picture.	

Reviewer	Page	Location	Comment/Suggestion	Tt Response
J. Carroll	3-4	Table 3-1	It would be good to have the sites listed in the table shown	Not done.
			on one of the maps so the reader can see where these sites	
			are in relation to the Tetra Tech sites.	
J. Carroll	Figure	Map site	The number label for the sites is too hard to read. A table	Not full page
	3-4		should accompany the map with site descriptions. About	map due to
			9 sites on this map are not referenced at all in the report.	formatting.
			Site SFPR-057675 should be a circle and not triangle.	Added
				background
				to sites
				make more
				legible
Е	3-5	Sec. 3.2.2.1 st	Seems fish parasites should be under biology not water	Completed
Snouwaert	55	para	quality.	as Requested
& C.Niemi		puin	4	us requested
E.		3.2.2	Water Quality - For organizational purposes the WQ	Completed
Snouwaert			section might benefit from first discussing what and where	as Requested
& C.Niemi			there are impairments and then discussing our status with	
			TMDLs. Don't break up by literature report but instead	
			piece together. At the end of this section it gets a little	
			confusing as to what is impaired and what is being	
		~	addressed by a TMDL	~
J. Carroll	3-5 to	Section 3.2.2	Too much emphasis on TIR study. It was a one day snap	Completed
	3-6		shot and showed general trends in water temperatures and	as Requested
			probably should be left at that. I here is too much	
Е	3.6	6 th paragraph	This sontance implies that the only EC besterie are only a	Completed
L. Snouwaert	5-0	last sentence	problem in the Colfax concrete flood works which is not	as Requested
& C Niemi		last sentence	the case. There are impairments and loading throughout	as Requested
a chivienni			the system.	
E.	3-7	Lower	Confusing since temperature and FC were already	Completed
Snouwaert		paragraph, 3 rd	discussed above.	as Requested
& C.Niemi		sentence		-
E.	3-12		Specify that Cow Creek is in Idaho so as to not confuse it	Completed
Snouwaert			with the one in Washington.	as Requested
& C.Niemi		- 4		
E.	3-12	2 nd	IDEQ has developed a TMDL for the South Fork Palouse	Completed
Snouwaert		paragraph,	River and they are currently working on an	as Requested
& C.Niemi	2.10	last sentence	Implementation Plan.	0 1 1 1
E.	3-12	3 rd para., 2 rd	Describe where the Busch site is	Completed
& C Niemi		sentence		as requested
F	3-12	$3^{\rm rd}$ para $4^{\rm th}$	Are the research wildlife and toxic sites in WA or ID?	Completed
L. Snouwaert	5-12	sentence	Are the research whome and toxic sites in why of 1D:	as Requested
& C.Niemi		Sentence		us requested
E.	3-13	2^{nd}	Sentence doesn't agree with table 3-7. One species vs. 3.	Completed
Snouwaert		paragraph,		as Requested
& C.Niemi		last sentence		1

Reviewer	Page	Location	Comment/Suggestion	Tt Response
Е.	3-14	2 nd paragraph	Was IDEQ 2007 the only document that stated the	Completed
Snouwaert			presence of native salmonid (cutthroat)? Were there	as Requested
& C.Niemi			references within in it or other sources that supported this	
			finding? When were they estimated to last be there?	
			Where were they – throughout the watershed or a specific	
			tributary or headwaters?	
E.	3-14	Second set of	When were they estimated to be introduced?	Completed
Snouwaert		bullets		as Requested
& C.Niemi				
E.	3-17	$2^{nd} \& 3^{rd}$	Stocking discussion redundant.	Completed
Snouwaert		paragraphs		as Requested
& C.Niemi				
E.	3-17	3 rd paragraph	This is the first mention of Redband trout. Was there no	Completed
Snouwaert			mention of the possibility of Redband in any other	as Requested
& C.Niemi			publication or research?	
E.	3-17	4^{th} para., 3^{rd}	What does the IA1 refer to?	Completed
Snouwaert		sent.		as Requested
& C.Niemi				
E.	3-18	1 st para	Reaney Park in Pullman is along the South Fork Palouse	Completed
Snouwaert			downstream of Paradise Creek. Do the park and rec	as Requested
& C.Niemi			employees actually think the children transported the fish	
			to Paradise Creek and released them or are they more	
			likely releasing them to the South Fork?	
E.	3-18	Table 3-10	Add "only" to the * to clarify those species are only found	Completed
Snouwaert			below the falls. Could just be saying they are present	as Requested
& C.Niemi			below the falls but also above the falls.	
J. Carroll	3-20	Table 3-11	It would be good to have a sense where these sites are	Completed
		and the rest	while reading the tables. Include a column for River Mile	as Requested
		of the tables	for each site. Also a general description would be good	
			(e.g., ID, WA, blw Pullman, abv Pullman, etc). The sites	
			on Paradise Creek need to re-ordered from downstream to	
			upstream like the rest of the water ways.	
J. Carroll	3-22	First para and	Please delete the "percent increase in shading due to	Completed
		Table 3-13	RCG" statistic. This calculated data is misleading about	as Requested
			how much shade is available to the stream surface.	
			Simply state what the shade is on the banks and what it is	
			mid-channel. Delete the sentence that makes the over-	
			general statement that RCG offers significant shade to the	
Г	2.02	T-11.2.14	streams.	Complete 1
E.	3-23	Table 3-14	1 itle on table wrong. Is it possible to include the	Completed
Snouwaert			approximate time of day the wQ readings were taken?	as kequested
& C.Niemi	2.02	Table 2 14	Add time of downers and more measured. Early on her 24	Completed
J. Carroll	5-25	1 able 3-14	Add time of day sample was measured. Ecology has 24-	Completed
			nour 15-minute data for these parameters collected in June	as kequested
Б	2.04	1 st montial	and July near to at many of the actuaries to local sites.	Completed
E.	3-24	1 partial	intermediately tolerant, and intelevant. Are reinhous transf	
& C Niomi		paragraph	in the intermediate category?	as requested
	1			1

Reviewer	Page	Location	Comment/Suggestion	Tt Response
E.	3-24	2^{nd} para, 1^{st}	Before ; add "throughout the study area"	Completed
Snouwaert		sent.		as Requested
& C.Niemi				
J. Carroll	3-24	4 th para	The way the paragraph reads, it state that "Diptera and	Completed
			Oligochaeta taxa comprised 53 percent of the samples at	as Requested
			sites SFPR-022859" and later states that Coleoptera	
			comprised 80% of the samples at SFPR-022859. That	
		th	adds up to more than 100%.	
E.	4-1	4 th paragraph,	Unclear because Reaney Park is along SFPR about 1 mile	Completed
Snouwaert		4 th sentence	from Paradise Creek.	as Requested
& C.Niemi	4 1	and 1 (0 1 1
J. Carroll	4-1	2 nd para, last	This sentence does not make sense to me.	Completed
L. C	4.0	sentence	Note the second se	as Requested
J. Carroll	4-2	4 para	Make 4 para the 2 para. It relates to the 1 para.	Completed
L Comoli	4.2	2 nd mana mid	The WWTD also depresses the dissolved everyon. Forly	as Requested
J. Carroli	4-2	2 para, mid	morning DO readings below the WWTB can be below 2	Completed as Paguastad
		para	molining DO readings below the wwith can be below 2	as Requested
I Carroll	1-2	2 nd para: last	It is not clear what is meant by "with abundances lower	Completed
J. Carron	72	sentence	in locations that have lower flows "	as Requested
I Carroll	4-3	3 rd para: last	Beginning with "The groundwater depression". This is	Completed
v. cuiron	1.5	sentence	a far-ranging and undocumented statement that should be	as Requested
		Sentence	deleted or written to provide more detail how the assertion	us requested
			is made.	
J. Carroll	4-3	Last para	Delete sentence with reference to timing of flow increase	Completed
		-	corresponding to University start-up. It does not add to	as Requested
			discussion here.	-
E.	4-4	Factors	Flow availability, Augmentation of Flow, and Flow	Completed
Snouwaert			Pattern Alternation all affect the items listed below it;	as Requested
& C.Niemi			however Water Quality Effects don't really affect the	
			transport of nutrient-rich soil, nutrient introduction etc.	
			Those things are factors that cause water quality effects.	
			There seems to be a lack in parallel structure. The	
			direction of the affect is opposite or not parallel in the last	
		DI (factor compared to the other factors.	0 1 1 1
E.	App.	Photo	None are labeled as Idaho (all say Washington) although I	Completed
Shouwaert & C Niomi	в	neadings	beneve idano photos/sites are there.	as Requested
E E	Ann	Site Man	Include a site man for easy reference to where the sites are	Not full page
L. Spouwaert	R R	She Map	located Could use Figure 2-1 or 3-4 but enlarge it to be a	man due to
& C Niemi	D		whole page so the site numbers are easy to read	formatting
			whole page so the site numbers are easy to read.	Added
				background
				to sites
				labels to
				make more
				legible