

Well to Plug GHG Emissions for Electric Power Generation – Washington Electricity Mix

June 30, 2022

Prepared by: Stefan Unnasch Love Goyal

DISCLAIMER

This report was prepared by Life Cycle Associates, LLC for the Washington Department of Ecology. Life Cycle Associates is not liable to any third parties who might make use of this work. No warranty or representation, express or implied, is made with respect to the accuracy, completeness, and/or usefulness of information contained in this report. Finally, no liability is assumed with respect to the use of, or for damages resulting from the use of any information, method, or process disclosed in this report. In accepting this report, the reader agrees to these terms.

ACKNOWLEDGEMENT

Life Cycle Associates, LLC performed this study under contract to the Washington Department of Ecology. Joel Creswell was the Ecology project manager.

Contact information:

Stefan Unnasch Life Cycle Associates, LLC 1.650.461.9048 unnasch@LifeCycleAssociates.com www.LifeCycleAssociates.com

Recommended Citation: Unnasch. S., and L. Goyal. (2022). Well to Plug GHG Emissions for Electric Power Generation – Washington Electricity Mix. Life Cycle Associates Report LCA.6207.230.2022, Prepared under Washington Ecology Contract C2200132

Contents

1. Electric Power Pathway in WA-GREET	1
1.1 Sources of Electric Power	
2. Fuel Pathway Calculations	
2.1 Electric Power	
2.1.1 Calculation Method	
2.1.2 WTT Calculation	
2.1.3 Biogas Power	
2.1.4 Transmission Losses	
2.2 Upstream and Direct Emission Data	
2.2.1 WTT Emission Factors	
2.2.2 Power Plant Emissions	
2.2.3 Regional Parameters	
2.3 Washington Specific Electricity Data	
2.3.1 Washington Average Electricity Pathway	
2.3.2 Washington Utility Specific Power	
3.1 Washington Utility CI Results	
References	
References	20
Tables	
Table 2.1. Resource Mix for LCFS Washington Average Case	6
Table 2.2. Combustion Technology Shares and Energy Efficiencies	
Table 2.3. WTT Emission Factors for Process Fuels	
Table 2.4. Power Plant Emissions on Electric sheet in GREET	
Table 2.5. Regionalization in WA-GREET	
Table 2.6. Fuel Source mapping table for the WA state aggregate fuel mix disclosure report.	
Table 2.7. Washington Average Resource Mixes	
Table 2.8 Allocation of Washington Fuel Mix Disclosure Resources Categories to WA-GRE	
Resources Categories	
Table 2.9. Utility_CI sheet from the Washington Utility CI Calculator	
Table 2.10. CI Results table in the WA Utility CI Calculator on Utility_CI sheet	
Table 3.1. Well to Plug GHG Emissions for Power Generation	
Table 3.2. Individual fuel type to power CI results	
Table 3.3. Washington Utility CI Results	24
<u></u>	
Figures	
Einen 1.1 Elegaide en la din maior in WA CREET 1.1	1
Figure 1.1. Electricity production regions in WA-GREET model	
Figure 1.2. Electricity Production System Boundary Diagram	
Figure 2.2. Screenshot of the 2020 Utility Fuel mix disclosure report	
Figure 3.1. Comparison of utility CI results from WA GREET and self-reported data	
Figure 3.1. Comparison of utility CI results from WA GREET and self reported data	23

Terms and Abbreviations

ANL Argonne National Laboratory Btu British thermal unit

CA California

CARB California Air Resources Board CCCT Combined cycle combustion turbine

CI Carbon Intensity

CHP Combined Heat and Power

EPA Environmental Protection Agency

GHG Greenhouse gas

GREET Greenhouse gas, Regulated Emissions and Energy Use

in Transportation (Argonne National Laboratory's well-to-wheels model)

GWP Global warming potential ICE Internal combustion engine

IPCC Intergovernmental Panel on Climate Change

J Joule

LCA Life cycle assessment LCFS Low Carbon Fuel Standard

LCI Life cycle inventory
LHV Lower heating value
MDT Million dry tons
MJ Mega Joule
mmBtu Million Btu
NG Natural gas

NREL National Renewable Energy Laboratory

RBOB Reformulated gasoline blendstock for oxygen blending

RFG Reformulated gasoline

SCCT Simple cycle combustion turbine

TTW Tank-to-wheels

ULSD Ultra low sulfur diesel

U.S. United States WA Washington

WA CFS Washington Clean Fuel Standard

WTT Well-to-tank
WTW Well-to-wheels

1. Electric Power Pathway in WA-GREET

Feedstock: Natural Gas, Coal, Biomass, Biogas,

Nuclear, Wind, Solar, Hydro

Products: Electricity

ARB 2009, ANL **Reference Documentation:**

Electricity is an intermediate source of energy used for fuel production and EV charging. Electricity is produced from a number of primary energy sources and via a number of different power generation technologies. Power generation in GREET is modeled based on the mix of natural gas, coal fuel oil, nuclear, biomass, and renewable resources. The Washington Clean Fuels Program (CFP) assigns electricity mix based on the average resource mix in each eGRID region shown in Figure 1.1.

Life cycle GHG emissions are based on the generation resource mix for each region. Direct emissions from power plants are based on estimated power plant types in each region. Upstream life cycle GHG emissions correspond to the specific resource extraction and processing as modeled in the GREET model for all fuel cycle pathways.

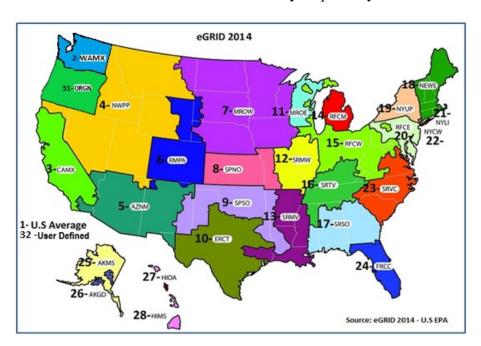


Figure 1.1. Electricity production regions in WA-GREET model

The U.S. Average Mix as well as eGRID values correspond to the power generation resource mix for the Megawatt-hours (MWh) generated in each region. Washington state average mix is developed based on the % contribution of various fuel types in total state electricity production over a given year, as reported under the annual Washington fuel mix disclosure reporting process.

In fuel cycle modeling, electricity is an intermediate fuel used in the recovery, processing, and production of other transportation fuels. Electricity is also a transportation fuel. Since electric vehicles do not emit any pollutants, fuel cycle emissions consist only of WTT emissions. When transmission losses included the emission are referred to as well to plug basis. The WTT emissions result from direct fuel combustion at the power plant and from upstream activities to recover, process, and transport fuels to the power plant. The system boundary for the electricity pathway, shown in Figure 1.2, includes the upstream activities of each fuel used to generate electricity, direct combustion of these fuels at the power plant, and losses through the transmission and distribution system. The following sections describe electricity generating resources and the WA-GREET electricity pathways. As is the case for other fuel pathways, the analysis framework excludes materials of construction for power plants and feedstock production equipment.

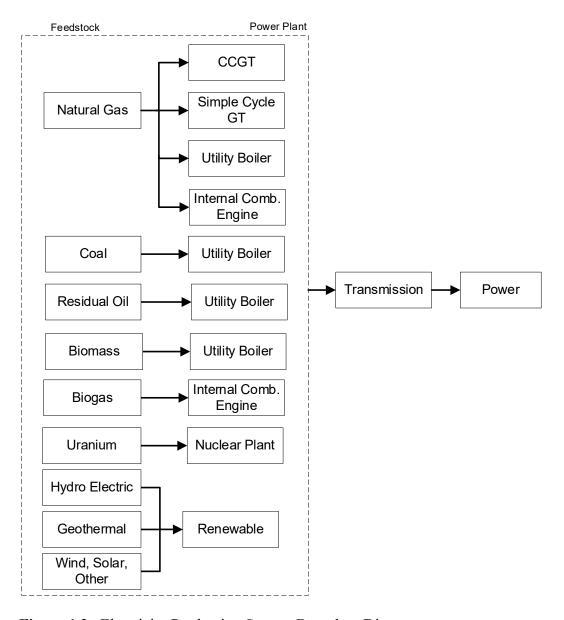


Figure 1.2. Electricity Production System Boundary Diagram

1.1 Sources of Electric Power

Emissions from electric power generation depend on the upstream feedstock as well as power generation emissions. Factors affection upstream emissions for each of the fuels described below are treated as default parameters in the WA-GREET model. A description of the power generation options in GREET follows.

Natural Gas to Electric Power

Natural gas provides a fuel for boiler/steam generators, simple cycle combustion turbines (SCCTs), combined cycle combustion turbines (CCCTs), and internal combustion engine (ICE) generation systems. In a steam generator, natural gas is burned in a furnace to raise steam which generates electricity as it passes through a steam turbine. In a simple cycle gas turbine, natural gas is burned in a combustor and then the hot combustion gases generate electricity as they flow through a gas turbine. A combined cycle plant is a combination of a simple cycle turbine and a steam generator. In a CCCT, the hot gases exiting the gas turbine are used to generate steam which then runs through a steam turbine to generate additional electricity. CCCTs are significantly more efficient than steam generators which are typically more efficient than simple cycle turbines.

Most new large capacity natural gas fired plants installed in the past few decades have been and will continue to be CCCTs because of their superior efficiency and lower cost. Historically, natural gas steam generators were base loaded facilities. However, with the advent of CCCTs over the past several decades, steam generators have been relegated to an intermediate cycling role, with SCCTs used as peaking units on hot summer afternoons. Natural gas-fired ICEs are also a generation resource, and are often used in combined heat at power (CHP) applications.

Coal to Electric Power

Despite strong head winds in the form of an aging fleet, increasingly stringent environmental regulations, and abundant new sources of domestic natural gas, coal is still used in much of the U.S. to generate electricity. Coal has traditionally been used in utility boiler/steam generators. A newer approach is to gasify the coal and then use the syngas in a combined cycle combustion turbine, or integrated gasification combined cycle (IGCC). IGCC is significantly more efficient than a steam generator and has lower emission rates though the adoption rate has not been significant due to competition from natural gas and other generation resources.

Fuel Oil to Electric Power

Once commonly used in utility boilers, residual oil is now only used in times of natural gas curtailment in Washington. Diesel oil is also used emergency generators and some combustion turbines, but again, this is generally only allowed in times of natural gas curtailment.

Nuclear Fuel to Electric Power

Nuclear power does not generate any power plant emissions, but does have upstream emissions associated with uranium mining, processing and transport. There are two main types of nuclear reactors in the U.S.: light water reactors and high temperature gas cooled reactors. All of the nuclear plants in the western United States are of the light water reactor design. The life cycle includes uranium mining, separation to fissile isotope, and processing.

Biogas to Electric Power

On-site power generation from landfills is a primary source of biogas-based power. Landfill gas (LFG) occurs from the decomposition of organic materials in landfills. The gas consists of a mixture of methane and CO₂. Absent the conversion of LFG to electric power, the gas would be flared. Internal combustion engines are the primary power generation equipment. GREET includes landfill gas pathways for fuel production but does not explicitly model biogas. Biogas power generation was added to the WA-GREET model.

Biomass to Electric Power

Biomass, such as farmed trees, perennial plants, or forest residue has long been used to generate electricity. Biomass is typically combusted boiler for steam production and power generation in a steam turbine. Boiler combustion methods range from stoker grates to fluidized beds. Biomass gasification is also an option for power generation, through the technology has not achieved widespread adoption. The direct carbon emissions from biomass are biogenic with upstream emissions associated with growing, harvesting and transporting the feedstock. Under the GREET model framework, the CO₂ emissions for power production are treated as carbon neutral since the carbon was recently removed from the atmosphere or in the case of forest residue and waste material it would decompose or be combusted as part of forest management operations.

Renewables to Electric Power

Resources that do not have any fuel cycle emissions (neither direct nor upstream) associated with them, including hydroelectricity, solar, wind, and geothermal. Under the WA-GREET framework, the renewable source derived electricity is considered to have zero CI.

Materials of Construction

Emissions associated with materials of construction are excludes from all of the fuel pathways analyzed in WA-GREET.

2. Fuel Pathway Calculations

This section describes the overall life cycle calculations for electric power pathway in WA-GREET. Examples are provided for the Washington average mix unless stated. The WA-GREET as well as an external calculator also calculate regional, and utility average CI values as described in Section 2.3.

The following describes the WTT calculations and factors that affect the carbon intensity for electric power. Upstream fuel cycle emissions are internally calculated in GREET. Some of the finished fuels, such as natural gas, diesel, and electric power are also inputs to other fuel production processes. This approach results in a recursive calculation within GREET to model the fuels used to make other fuels in turn used to make all the fuels in general.

2.1 Electric Power

Fuel cycle emissions from electric power include emissions at the power plant and the upstream emissions to produce feedstocks. WA-GREET calculates the WTT LCI data for electricity use in fuel production processes. The electricity sub-module calculates the fuel cycle emissions for electric power generation from a variety of generation resources. The following sections describe the general calculation methodology.

2.1.1 Calculation Method

For electricity pathways, all of the emissions occur in the fuel cycle and no emissions occur during vehicle operationsi. The WTT emissions comprise the entire fuel life cycle. To estimate WTT emissions for electricity production, the typical GREET methodology is employed according to the following equation:

$$E_{Electricity,WTT} = \left(\sum_{i=1}^{n} \sum_{k=1}^{m} (F_i \times S_{i,k} \times (E_{Feed} + E_{Fuel})_{i,k})\right) \div (1 - LF_{T\&D})$$

where,

E_{Electricity} = GREET WTT result for upstream fuel cycle for electricity, a data array of life

cycle greenhouse gas and criteria pollutant emissions for the electricity pathway

per unit transportation fuel

E_{Feed} = data array of upstream emissions for the power plant fuel (for example, the

emissions associated with natural gas recovery, processing and transport to the

power plant per unit natural gas)

ⁱ Other emissions such as changes in brake wear and ozone from motors may be attributed to EVs, but are not discussed here. TTW emissions are treated as zero in this discussion.

E _{Fuel}	= data array of direct emissions from the power plant (for example, the emissions associated with burning natural gas in a combined cycle combustion turbine per unit natural gas)
$\begin{array}{c} F_i \\ S_{i,k} \end{array}$	= Fuel shares of generation mix = Specific energy of i fuel type consumed by k power plant type per unit of fuel produced such that $S=F_i\times Technology$ share, k/η_k where η is the generation efficiency for each technology type (for example, the amount of natural gas burned in a utility boiler per unit of electricity produced)
i	= different resources used to produce electricity (for example, natural gas, coal, oil, biomass, wind, etc.)
k	= different types of combustion equipment used to generate power from a given fuel (for example boiler, combined cycle turbine, simple cycle turbine)
LF _{T&D}	= Loss factor due to electrical losses along transmission and distribution lines

In general, the amount of each fuel type used in each different combustion device to produce a unit of electricity is an input $(S_{i,k})$. The WTT result is based on the weighted average for each fuel resource. The S is multiplied by the upstream and direct emissions per unit of fuel consumed. The resulting emissions from each fuel type and combustion device per unit of electricity produced are summed and then adjusted for transmission and distribution losses. The following sections describe in detail how the emissions are calculated, using the current WA CFP using Washington state average mix case as an example.

2.1.2 WTT Calculation

Fuel resource mix for the 2018 Washington average case is shown in Table 2.1 and compared to the U.S. Average mix. The Washington average fuel mix is an estimate of the share of each fuel consumed in Washington in 2018. The fuel mix was determined by allocating the fuel types as reported under the Washington fuel mix disclosure report to the fuel types compatible with the GREET model framework.

Table 2.1. Resource Mix for LCFS Washington Average Case

	Fuel Share (Fi)				
Resource Type	Washington	U.S. Average			
Residual Oil	0.10%	1.2%			
Natural Gas	20.26%	27.6%			
Coal	10.22%	38.7%			
Nuclear	4.75%	19.5%			
Biomass	0.45%	0.45%			
Biogas	0.2%	In Biomass			
Non-combustion Renewables	64.03%	11.4%			

Following the default assumptions for the WECC region in CA-GREET3.0, the residual consumption is distributed among utility boiler, internal combustion engine, and gas turbine. All of the coal and biomass are burned in utility boilers. The natural gas is distributed among boilers, combined cycle combustion turbines (CCCT), simple cycle combustion turbines (SCCT), and internal combustion engine. All of the nuclear power is assumed to come from light water reactors. The combustion technology shares for each fuel type and the associated energy efficiency are provided in Table 2.2. The technology shares for all technologies are directly based on CA-GREET3.0 and is specific to a given region as classified under the North American Electric Reliability Corporation (NERC) classification. Washington state electricity mix CI calculation uses the WECC region technology shares as this region incorporates the Washington.

Table 2.2. Combustion Technology Shares and Energy Efficiencies

				Energy	WAMX
	Fuel			Consumption	Specific
	Share,	Technology	Energy	(Btu/mmBtu)	Energy, Si,k
Resource Type	Fi	Share	Efficiency	,	(Btu/mmBtu)
Residual Oil-Fired Power	0.10%		33.65%	-	=
Plants					
Boiler		72.4%	33.90%	2,949,853	2,156
Internal Combustion Engine		15.5%	39.00%	2,564,103	401
Gas Turbine		12.1%	27.60%	3,623,188	442
Natural Gas-Fired Power Plants	20.26%		48.12%		
Boiler		6.4%	32.00%	3,125,000	40,529
Simple-cycle gas turbine		3.3%	32.80%	3,048,780	20,388
Combined-cycle gas turbine		89.2%	51.10%	1,956,947	357,732
Internal Combustion Engine		1.1%	34.40%	2,906,977	6,480
Coal-Fired Power Plants	10.22%		34.70%	<i>y y</i>	-,
Boiler		100.0%	34.70%	2,881,844	294,388
IGCC		0.0%	40.00%	2,500,000	Ó
Biomass Power Plants	0.45%		22.60%	, ,	
Boiler		100.0%	22.60%	4,424,779	19,770
IGCC		0.0%	40.00%	2,500,000	0
Biogas Power Plants	0.20%			, ,	
Internal Combustion Engine		100%	34.4%	2,906,977	5,745
Nuclear Power Plants	4.75%		100.0%	1,000,000	47,478
Other Power Plants (hydro,	64.03%		100.0%	1,000,000	640,274
wind, geothermal, etc.)			100.076	1,000,000	040,274
Hydroelectric		92.4%			
Geothermal		0.0%			
Wind		7.2%			
Solar PV		0.4%			
Others (Biogenic Waste, Pumped Storage, etc.)		0.0%			

Energy Consumption is the inverse of energy efficiency, multiplied by 1,000,000.

WA average specific energy is the Energy Consumption multiplied by the fuel shares in the previous table for the 2018 Washington Average mix case

 $S_{NG, Boiler} = F_i \times Tech Share_{Boiler} / \eta_{Boiler} = 1,000,000 \times 20.264\% \times 6.4\% / 33.0\% = 40,529$

Before emissions can be estimated, the specific energy consumption for each fuel type must be determined. As mentioned above, specific energy is the amount of each type of fuel consumed per unit of electricity produced (Btu/mmBtu electricity) for each combustion device. The fuel resource mix, combined with efficiency of each generation device provides the basis to calculate the specific energy. The calculated average fuel use for each resource is then combined with the corresponding upstream factor associated with the resource extraction process modeled by other modules of the GREET model to calculate the total upstream emissions.

For each resource, the emissions from combustion for each given technology is combined with the corresponding technology share to calculate the emissions from electricity generation. Electricity generation emissions from all the resources are then combined with resource mix shares and added together to get the total electricity generation emissions from all the resources combined.

The upstream and the combustion emissions together represent the total emissions produced from the resource extraction as well as the combustion during the electricity generation at the outlet of the power plant.

2.1.3 Biogas Power

Biogas as a fuel type to produce electric power is not modeled in GREET1_2016. For the purposes of Washington CFS, this has been specially added in the WA-GREET framework. Following the consultation with Washington Department of Ecology, the public review process and the peer review process, and after input from Washington Department of Commerce, it was deemed necessary to represent the power generation in Washington from landfill gas as its own fuel type.

To that end, a new fuel type for electricity generation was added to WA-GREET specifically for the WA state grid mix CI calculation. Biogas was chosen as the most appropriate fuel type to represent the landfill gas used in the state to generate power.

The biogas to power pathway added to WA-GREET was considered to be carbon neutral for the CI calculation purpose. This was achieved by considering RNG flaring as the alternative fate of the biogas used to make power. This implied that the fully oxidized form of the carbon emissions in from RNG flaring were subtracted from the biogas combustion emissions in a stationary reciprocating engine.

This carbon neutral approach implies that CH₄ and N₂O emissions from biogas combustion were the primary form of GHG emissions from the biogas to power pathway, prior to the power conversion efficiency and transmission losses. This calculation approach however resulted in the net emissions from biogas to power showing up only in the power generation phase of the lifecycle.

Power conversion efficiency and technology shares for natural gas to power were also used for the biogas to power conversion efficiency and technology mix.

2.1.4 Transmission Losses

GREET WTT results include transmission losses. The total emissions from power generation including the upstream resource extraction are adjusted to include the losses during electricity transmission.

The loss factor is defined such that:

Power at wall = Power at plant \times (1 – LF_{T&D})

Based on CA-GREET3.0, WA-GREET uses a transmission loss factor of 6.5%. After such adjustment, the final value represents the lifecycle emissions from the electricity at the wall outlet or consumption location.

2.2 Upstream and Direct Emission Data

Both the upstream and direct emission factors for power production pathway are based on the values in the WA-GREET model. Upstream emissions are referred to as well-to-tank or WTT emissions, and direct emissions or power plant emissions are referred to as tank-to-wheel or TTW emissions. The following sections describe the specific approach and data used to model both these phases for power production in WA-GREET, and how these data are affected by certain regional parameters in the GREET model.

2.2.1 WTT Emission Factors

Upstream life cycle data are calculated the GREET model using the procedure identified in Section 2.1.1 for each of the power generation resources. WTT emissions are based on the GREET model approach and corresponding fuel's upstream emissions as modelled within WA-GREET. The upstream life cycle approach is further discussed in detail in the original GREET documentation (Wang, 1999).

Table 2.3. WTT Emission Factors for Process Fuels

Upstream CI for Electricity Resources g/MMBtu of resource	Residual Oil	NG	Coal	Biomass	Nuclear	Other renewable energy sources
voc	5.76	10.35	7.53	1.03	0.95	0
СО	12.25	32.21	3.04	4.31	3.95	0
CH ₄	162.14	260.47	149.17	4.76	6.48	0
N ₂ O	0.21	1.43	0.04	0.03	0.05	0
CO ₂	10,686	6,792	1,731	2,104	2,393	0
CO ₂ e	14,839	13,811	5,499	2,241	2,578	0

2.2.2 Power Plant Emissions

Power plant emissions depend on the efficiency for each fuel generation resource in combination with the emission factor for each fuel type. The emission factors on the EF sheet in GREET. The emission factors represent the combusted fuel based on its fuel properties. GREET calculates VOC and CO emissions as fully oxidized with the same GWP as CO₂ per g of carbon. Power plant emission factors for each fuel type also depend on the technology type which affects methane and N₂O emissions. Biomass and biogas are treated as biogenic carbon neutral.

Table 2.4. Power Plant Emissions on Electric sheet in GREET

	User-Inp	User-Inputted Emission Factors (Default Data Here Are Emission Factors for EPA Database [g/kWh])									
	By Fuel-Type Plants										
Pollutant	Oil Boiler NG NG NG NG ICE Coal Boiler Forest Re										
VOC	0.020	0.030	0.011	0.002	1.071	0.009	0.134				
СО	0.158	0.458	0.414	0.090	3.684	0.056	4.733				
CH₄	0.031	0.011	11 0.011 0.007 0.011 0.010		0.010	0.491					
N ₂ O	0.006	0.006 0.001 0.00		0.001	0.001	0.015	0.065				
CO ₂	829 595 596 368 587 948 1,492										
CO ₂ c							-1,501				

2.2.3 Regional Parameters

WTT and power plant emissions are affected by the regional selection of power generation resources. WTT emissions for each fuel depend on the fuel cycle for a variety of fuels. WA-GREET allows for the separate calculation of feedstock and fuel phase GHG emissions.

Table 2.5. Regionalization in WA-GREET

Scenario	Scenario									
Year	Feed	Fuel	Products							
2017 Baselir	<u>ne</u>									
2017	US	WA^a	WA Gasoline, WA Diesel, WA Jet							
2017	2017 US NWPP UT Gasoline, UT Diesel									
2017	US	NWPP	MT Gasoline, MT Diesel							
2017	US	US	Corn Ethanol, Soy Biodiesel							
Look Up Tab	ole Pathways									
2018			WA, Utility Average Electricity, Hydrogen (SMR), Hydrogen (electrolytic), CNG, LNG							
2018 US US		US	LPG							
Upstream D	ata for Fuel Path	ways								
2018	US	WA	Corn, soybean oil, canola oil							

^aWA Fuel Mix corresponds the the WECC efficiency assumptions in GREET

2.3 Washington Specific Electricity Data

For the purposes of the Washington Clean Fuels Standards (CFS), the carbon intensity for electric power generated in Washington was modeled in the WA-GREET model. The Washington Department of Commerce regularly collects information and data from all electricity generators in the state to quantify the amount of electric power generated from various fuel sources. This data is published annually by the Washington Department of Commerce in the form of two specific disclosure reportsⁱⁱ.

- Fuel Mix Aggregate Time Series
- [Utility Fuel mix] Disclosure Data report

The Fuel Mix Aggregate Time series is a spreadsheet that includes the MWh of power generated in the entire state by each fuel type in a yearly time-series form. The Disclosure Data report was retrieved directly in a spreadsheet format by Washington Department of Commerce, but contains the same data as the publicly-available PDF format report. This yearly report includes the MWh of power generated/purchased by each utility in the state in a given year broken down by each fuel type.

ii WA Fuel Mix Disclosure Data (https://www.commerce.wa.gov/growing-the-economy/energy/fuel-mix-disclosure/)

	A	В	С	D	Е	F	G	Н	1	J
1		sumption by Fu	el Source	Updated Dec 2	019	-	_			
2	-	ate Aggregate F		018						
3	Megawatt Hou	rs								
4										
5	Fuel Source 🕆	2000 🔻	2001 -	2002	2003	2004	2005 🔻	2006	2007	2008
6	Landfill Gas	68,978	70,807	220,705	75,125	134,122	80,500	57,858	49,041	23,043
7	Other	-	-	233,995	6,991	37,379	31,156	10,863	12,923	19,391
8	Solar	-	-	-	-	-	-	-	-	-
9	Geothermal	143,024	158,779	-	-	-	-	14,399	11,189	16,866
10	Waste	159,888	236,666	23,471	139,056	102,864	150,955	331,963	288,528	276,669
11	Petroleum	401,383	489,650	22,244	34,957	53,046	44,233	62,232	69,267	69,937
12	Other Biogenic	-	-	- '	-	-	-	-	-	-
13	Other Non-Bio	-	-	-	-	-	-	-	-	-
14	Biogas	-	-	-	- '	-	-	-	-	-
15	Biomass	1,100,469	937,515	392,378	434,700	536,643	587,085	392,712	460,983	415,226
16	Wind	-	23,822	163,134	320,540	346,470	432,667	867,392	545,622	1,010,928
17	Nuclear	4,285,939	3,975,371	3,858,716	3,726,175	4,591,072	4,403,537	4,513,216	4,326,265	5,083,665
18	Natural Gas	10,771,994	11,863,293	6,606,079	7,961,221	7,379,356	7,986,135	7,319,961	8,459,744	9,021,054
19	Coal	16,243,438	13,247,976	10,076,412	14,336,264	14,459,001	14,860,017	14,245,188	14,866,637	15,034,912
20	Hydropower	67,889,834	45,853,455	56,339,641	53,850,478	54,132,176	55,342,273	59,609,529	59,203,647	58,235,550
21	Unspecified									
22	Total	101,064,948	76,857,334	77,936,775	80,885,507	81,772,129	83,918,558	87,425,313	88,293,846	89,207,239
23	Check	101,064,948	76,857,334	77,936,775	80,885,507	81,772,129	83,918,558	87,425,313	88,293,846	89,207,239

Figure 2.1. Screenshot of the Fuel Mix Aggregate Time Series 2019 (CY2018) report

The above Figure 2.1 shows the screenshot of the "publish to web" sheet of the so far latest available state aggregate fuel mix report. The screenshot illustrates how the annual power generation is categorized into various fuel sources. Similarly, a screenshot of the "Report Extract" sheet of the latest available utility fuel mix disclosure report is present below in the Figure 2.2.

1	Α	В	C	D	E	F	G	Н	1	J	K	L	М	N
						BPA						Total	Total Claims	
		Customer				Unspecified	BPA Claims			Unspecified		Unspecified	on Plants	
	Report	Served	Claimant		Fuel Type Category	Purchases	on Plants	Total BPA	Adjusted WA	Purchases	Plant Claims	Purchases	(Specified)	
1	Year	State	ID	Claimant Name	Name	MWh	MWh	MWh	PacifiCorp	MWh	MWh	MWh	MWh	Total MWh
2	2020	WA	1	Alder Mutual Light	Biogas	0	0	0	0	0	0	0	0	0
3	2020	WA	1	Alder Mutual Light	Biomass	2	0	2	0	0	0	2	0	2
4	2020	WA	1	Alder Mutual Light	Coal	76	0	76	0	0	0	76	0	76
5	2020	WA	1	Alder Mutual Light	Geothermal	0	0	0	0	0	0	0	0	0
6	2020	WA	1	Alder Mutual Light	Hydro	97	4,616	4,713	0	0	0	97	4,616	4,714
7	2020	WA	1	Alder Mutual Light	Natural Gas	55	0	55	0	0	0	55	0	55
8	2020	WA	1	Alder Mutual Light	Nuclear	6	595	601	0	0	0	6	595	602
9	2020	WA	1	Alder Mutual Light	Other Biogenic	0	0	0	0	0	0	0	0	0
10	2020	WA	1	Alder Mutual Light	Other Non-Biogenic	2	0	2	0	0	0	2	0	2
11	2020	WA	1	Alder Mutual Light	Petroleum	1	0	1	0	0	0	1	0	1
12	2020	WA	1	Alder Mutual Light	Solar	0	0	0	0	0	0	0	0	0
13	2020	WA	1	Alder Mutual Light	Unknown	0	0	0	0	0	0	0	0	0
14	2020	WA	1	Alder Mutual Light	Waste	0	0	0	0	0	0	0	0	0
15	2020	WA	1	Alder Mutual Light	Wind	0	0	0	0	0	0	0	0	0
16	2020	WA	4	Benton County PUD #1	Biogas	0	0	0	0	0	0	0	0	0
17	2020	WA	4	Benton County PUD #1	Biomass	699	0	699	0	0	0	699	0	699
18	2020	WA	4	Benton County PUD #1	Coal	22,887	0	22,887	0	0	0	22,887	0	22,887
19	2020	WA	4	Benton County PUD #1	Geothermal	0	0	0	0	0	0	0	0	0
20	2020	WA	4	Benton County PUD #1	Hydro	29,257	1,389,416	1,418,673	0	0	13,769	29,257	1,403,185	1,432,442
21	2020	WA	4	Benton County PUD #1	Natural Gas	16,473	0	16,473	0	0	0	16,473	0	16,473
22	2020	WA	4	Benton County PUD #1	Nuclear	1,874	179,185	181,059	0	0	0	1,874	179,185	181,058

Figure 2.2. Screenshot of the 2020 Utility Fuel mix disclosure report

Both reports include the breakdown of the fuel sources used in the state to generate electric power. It should be noted that the list of fuel sources varies slightly between the two reports, which is a result of the data collection and compilation process employed by the Washington Department of Commerce to develop these two disclosure reports.

To be able to model and calculate the carbon intensity of WA state aggregate or a given utility power in WA-GREET, the first step is to re-map the fuel source types as present in the state aggregate/utility fuel mix disclosure data to fuel source types included in WA-GREET. This mapping, combined with the raw disclosure data forms the basis of calculating the grid mix for a given year before it is plugged into the WA-GREET model. Additionally, as this fuel mix disclosure data is available on a yearly basis, it may be required to be updated periodically for various purposes under the WA CFS.

2.3.1 Washington Average Electricity Pathway

The WA-GREET model has one additional electricity pathway in comparison to CA-GREET3: Washington Average mix. It is used as an intermediate fuel in the production of other transportation fuels. The Washington Average pathway is used to estimate energy and emissions from electricity used for biofuel production. Table 2.7 provides a summary of the 2017 and 2018 Washington state average electricity mix. The mix is based on the annual Washington aggregated fuel mix disclosure report.

As mentioned in the previous section, the GREET compatible grid mix is developed by remapping the fuel sources present in the state aggregated fuel mix disclosure report to GREET compatible fuel sources. This re-mapping for 2017 and 2018 is performed in a new sheet, called "WA-GREET," that was added to the aggregate time series spreadsheet specified previously. This new sheet uses the mapping table presented below in Table 2.6 to re-map the fuel sources in disclosure report to allow the calculation of GREET compatible grid mix.

Table 2.6. Fuel Source mapping table for the WA state aggregate fuel mix disclosure report

WA Fuel Mix				(REET Cate	gories				
Disclosure	Residual oil	Natural gas	Coal	Nuclear power	Biomass	Biogas	Hydro electric	Geoth ermal	Wind	Solar PV
Hydropower							х			
Coal			х							
Cogeneration		Х								
Natural Gas		Х								
Nuclear				х						
Biomass					х					
Petroleum	х									
Waste	х									
Geothermal								x		
Landfill Gas						x				
Wind									х	
Other	х									
Solar										х
Unspecified		х								

The following Table 2.7 present the grid mix for 2017 and 2018 as calculated directly from the disclosure report and after re-mapping to WA-GREET compatible fuel sources.

 Table 2.7.
 Washington Average Resource Mixes

Fuel Type	2017 WA Disclosure	2017 WAMX Mix	2018 WA Disclosure	2018 WAMX Mix
Residual oil	0.11%	0.33%	0.02%	0.10%
Other	0.18%	-	0.05%	-
Waste	0.04%	-	0.04%	-
Coal	13.39%	13.39%	10.22%	10.22%
Natural gas	10.83%	10.83%	7.33%	20.26%
Cogeneration	0.00%	-	0.00%	-
Unspecified	0.00%	-	12.93%	-
Landfill Gas (Biogas)	0.13%	0.13%	0.20%	0.20%
Nuclear power	4.19%	4.19%	4.75%	4.75%
Biomass	0.60%	0.60%	0.45%	0.45%
Hydroelectric	67.68%	67.68%	59.16%	59.16%
Geothermal	0.00%	0.00%	0.00%	0.00%
Wind	2.84%	2.84%	4.58%	4.58%
Solar PV	0.00%	0.00%	0.28%	0.28%

The grid mix resulted after the re-mapping can be plugged into WA-GREET model on the Inputs sheet as shown below in the Figure 2.3. Additional columns for new years can be added to the right with some adjustment to the lookup function implemented in the Active column.

\sim	J		1	1		
4	K	L	M	N	0	P
656	10.2.b.1) Electric Generati	on Mix for Washington: Ba	ased on yearly data fr	om Dept of Commerce		
657						
658	Active Case selection:	2018				
659						
660	WA Grid Mix	2017	Active	2018	2019	2020
661	Residual oil	0.33%	0.10%	0.10%		
662	Natural gas	10.83%	20.26%	20.26%		
663	Coal	13.39%	10.22%	10.22%		
664	Nuclear power	4.19%	4.75%	4.75%		
665	Biomass	0.60%	0.45%	0.45%		
666	Biogas	0.13%	0.20%	0.20%		
667	Others	70.53%	64.03%	64.03%		
668	Total	100.00%	100.00%	100.00%	100.00%	100.00%
669						
670	"Others" mix	2017	Active	2018	2019	
671	Hydroelectric	95.96%	92.39%	92.39%		
672	Geothermal	0.00%	0.01%	0.01%		
673	Wind	4.03%	7.16%	7.16%		
674	Solar PV	0.00%	0.44%	0.44%		
675	Total	100.00%	100.00%	100.00%	100.00%	100.00%

Figure 2.3. Screenshot of Electric section of Inputs showing WA grid mix input data

Updating State aggregated mix

To perform this the CI results for state aggregate grid mix for a subsequent year, the following steps can be followed:

- 1. Copy the "WA-GREET" sheet from the modified aggregated fuel mix disclosure report (provided to Ecology) into a newer aggregated fuel mix disclosure report.
- 2. Update references in the sheet looking up to old file to the new file.
- 3. Add a section below existing data for the new year.
- 4. Copy the structure and formulas from the 2018 re-mapping table under the new year section.
- 5. Update the references in the new section from 2018 disclosure data to the new year's disclosure data.
- 6. Cross check results by matching the total produced power in the newly created section with the total power as calculated in the pre-existing sheet for the new year.
- 7. The resulting grid mix can be added to the WA-GREET model or potentially to the WA Utility CI calculator for calculating the CI results.

2.3.2 Washington Utility Specific Power

Within Washington, the WA CFS regulation includes provision to allow the use of utility specific CI for certain purposes outside of biofuel pathways, like credit generation from Electric Vehicle charging. To this end, Life Cycle Associates developed a new calculator external to the WA-GREET, referred to as "WA Utility CI Calculator," that models the carbon intensity for the power generated by an individual utility within Washington. This calculator is based on the well-to-plug lifecycle emission calculation methodology from WA-GREET described above and uses the utility specific electricity generation mix as reported under the Washington utility mix disclosure data.

Under the annual Washington utility mix disclosure report, the fuel types used to generate electricity by each specific utility in Washington is also reported annually. This data is included in the "Report Extract" sheet of the annual utility fuel mix disclosure report provided by Washington Department of Commerce. A screenshot of the "Report Extract" sheet showing such information structure is presented previously in the Figure 2.2. A copy of this sheet is pasted into the utility CI calculator, to be used as the direct data source for fuel mix for each utility. Each utility in the disclosure report is classified by its unique "Claimant ID" which is also associated to the utility name as the "Claimant name."

This annual report includes the self-reported amount of electricity production, in MWh, from a defined list of fuel types. The fuel type categories in the report include the following types of fuel used by a given utility for its electricity production:

- Biogas
- Biomass
- Coal
- Geothermal
- Hydro
- Natural Gas
- Nuclear
- Other Biogenic
- Other Non-Biogenic
- Petroleum
- Solar
- Unknown
- Waste
- Wind
- Unspecified (Plant use)
- Unspecified (BPA purchase)

These categories are matched with the resource categories as defined and used in the GREET model framework to calculate a WA-GREET compatible electricity resource mix for any given utility. In consultation with Ecology, a conservative approach was followed to perform this allocation as illustrated in the following Table 2.8.

Table 2.8 Allocation of Washington Fuel Mix Disclosure Resources Categories to WA-GREET Resources Categories

Energy	Residual	Natural	Coal	Nuclear	Biomass	Biogas	Hydroelectric	Geothermal	Wind	Solar PV
Resources	oil	gas		power						
Biogas						1				
Biomass					1					
Coal			1							
Geothermal								1		
Hydro							1			
Natural Gas		1								
Nuclear				1						
Other Biogenic						1				
Other Non-	1									
Biogenic										
Petroleum	1									
Solar										1
Unknown		1								
Waste	1									
Wind									1	
Unspecified		1								
(Plant)										
Unspecified		1								
(BPA)										

The WA utility CI calculator allows the selection of the utility for which the lifecycle carbon intensity result is desired using its Claimant ID as reported under the Washington utility mix disclosure report due to its unique nature. The calculator includes the data directly extracted from the utility disclosure report for reference and also for use in CI calculation.

The utility selection is available on the "Utility_CI" sheet of the calculator using a combination of drop-down menus. The first drop-down menu allows the user to select between a pre-defined Washington utility or a User-Defined mix. The second drop-down menu allows the user to select a Claimant ID from the list of all the available claimant IDs under the utility mix disclosure data.

The utility selection is available on the "Utility CI" sheet of the calculator using a combination of drop-down menus. The first drop-down menu allows the user to select between a pre-defined Washington utility or a User-Defined mix. The second drop-down menu allows the user to select a Claimant ID from the list of all the available claimant IDs under the utility mix disclosure data.

Upon selection of a claimant ID, the calculator shows the utility Claimant name of the corresponding ID from the utility mix disclosure report. Underneath the drop down menus, the calculator also includes a table showing the electricity generation mix for the selected utility as well as a section to input the custom user-defined mix.

Based on the selection of the first dropdown menu, the calculator activates the correct electricity generation mix as the active case. If User-defined mix is selected in the first drop-down menu, the second drop-down menu is functionally ignored, and the CI results correspond to the custom resource mix inputted by the user.

The drop-down menus and the generation mix table on the Utility CI sheet on the Washington utility CI calculator is shown in the Table 2.9 below.

Table 2.9. Utility CI sheet from the Washington Utility CI Calculator 1) Selection of Washington Utility or User Defined mix 1 - Washington Utility 2 - 2018 Washington state grid mix 3 - User Defined Mix 1.1) Selection of the WA Utility ID for CI Results Utility Claimant ID *List of all Utility IDs and names available on Report Extract sheet Name of the Selected Utility Mix Alder Mutual Light 2) Electric Generation Mix: Data Table Active Case for CI Calculation User Defined Alder Mutual 2018 WA state Fuel Type 2018 WA state grid mix grid mix Mix Light Residual oil 0.10% 0.00% 0.10% 0.10% 20.26% 4.39% 20.26% 20.26% Natural gas Coal 10.22% 0.00% 10.22% 10.22% Nuclear power 4.75% 10.92% 4.75% 4.75% Riomass 0.45% 0.00% 0.45% 0.45% Biogas 0.20% 0.00% 0.20% 0.20% Others 64.03% 84.70% 64.03% 64.03% 2018 WA state Alder Mutual User Defined "Others" category 2018 WA state grid mix Light grid mix 92.39% 92.39% Hydroelectric 92.39% 100.00% Geothermal 0.01% 0.00% 0.01% 0.01% Wind 7.16% 0.00% 7.16% 7.16% Solar PV 0.44% 0.00% 0.44% 0.44% 2020 Disclosure 2020 Fuel Share Report Extract

The calculator then follows the GREET methodology to calculate the lifecycle emissions from electricity produced at the selected Washington utility, or a user-defined mix, as selected by the user. The calculator shows the final well-to-plug electricity CI results for the selected source in gCO₂e/MJ as well as gCO₂e/kWh, as shown below in the Table 2.10.

Table 2.10. CI Results table in the WA Utility CI Calculator on Utility CI sheet

B) CI Results for: User Defined Mix								
Details Breakdown of CI for Electricity Resources: Upstream phase	Residual Oil	NG	Coal	Biomass	Nuclear	Other renewable energy sources	Total Upstream, g/MMBtu	
VOC	0.02	4.65	2.37	0.02	0.04	0.00	7.106	
со	0.04	14.48	0.94	0.09	0.18	0.00	15.731	
CH4	0.51	117.18	46.86	0.10	0.23	0.00	164.888	
N2O	0.00	0.64	0.01	0.00	0.00	0.00	0.653	
CO2	30.23	2980.35	484.76	43.69	63.21	0.00	3602.229	
Convert to gCO2e/MMBtu	43.35	6138.10	1668.26	46.54	69.74	0.00	7965.982	
g/MJ	0.04	5.82	1.58	0.04	0.07	0.00	7.55	
g/kWh							27.18	
Details Breakdown of CI for Electricity Resources: Electricity	Residual Oil	NG	Coal	Biomass	Biogas	Other renewable	Total Electricity	Final WTW CI
Production phase & Final WTW CI	nesidudi oli	NG	Coai	bioinas	ыодаз	energy sources	Prod, g/MMBtu	
Production phase & Final WTW CI VOC	0.00	0.95	0.48	0.18	0.39		,	
·						energy sources	g/MMBtu	
voc	0.00	0.95	0.48	0.18	0.39	energy sources 0.00	g/MMBtu 2.002	
voc co	0.00 0.04	0.95 10.52	0.48 4.07	0.18 6.46	0.39 1.68	0.00 0.00	g/MMBtu 2.002 22.771	
VOC CO CH4	0.00 0.04 0.01	0.95 10.52 0.47	0.48 4.07 0.32	0.18 6.46 0.67	0.39 1.68 2.74	0.00 0.00 0.00	g/MMBtu 2.002 22.771 4.212	
VOC CO CH4 N2O	0.00 0.04 0.01 0.00	0.95 10.52 0.47 0.06	0.48 4.07 0.32 0.51	0.18 6.46 0.67 0.09	0.39 1.68 2.74 0.01	0.00 0.00 0.00 0.00 0.00	g/MMBtu 2.002 22.771 4.212 0.673	
VOC CO CH4 N2O CO2	0.00 0.04 0.01 0.00 272.79	0.95 10.52 0.47 0.06 26738.97	0.48 4.07 0.32 0.51 31490.51	0.18 6.46 0.67 0.09 -12.57	0.39 1.68 2.74 0.01 -11.38	0.00 0.00 0.00 0.00 0.00 1.079	g/MMBtu 2.002 22.771 4.212 0.673 58479.410	63.

Updating Utility Specific Mix

A Washington Electric Utility CI calculator was developed with the intention to make it easy to update it and accommodate any subsequent years' data as provided by Washington Department of Commerce. The raw data, once imported into the utility CI calculator, is referenced in a progressive manner such that very few references are needed to be updated during this process.

The raw data from Washington Department of Commerce is included as its own sheet in the calculator, called "Report Extract." Data for each utility from this sheet is aggregated in its own single row, with different fuel sources in separate columns, on the "disclosure" sheet. One key aspect to this is the use the "Unique" formula available in Excel, in the Col A of this sheet, to remove the duplicate entries of the Claimant ID from the report extract sheet. As previously described, this claimant ID is used as the primary identifier for each utility.

The reorganized raw data on the disclosure sheet is then re-mapped on the "Fuel shares" sheet, using the mapping table available on the "EF_Tables" sheet. The fuel shares sheet primarily refers to the disclosure sheet and EF_Tables sheet, thus requiring minimal adjustment despite addition of a new raw data sheet.

Fuel shares sheet results in the remapped, GREET-compatible fuel mix for each utility which is then used for CI calculations on the "Utility" sheet. Utility sheet also does not directly refer to the raw data, requiring minimal changes to accommodate new raw data.

In order to update this calculator to use the utility fuel mix from a subsequent year, the following steps can be followed:

1. Collect the excel version of the utility mix disclosure report from Washington Department of Commerce for the given year.

- 2. Copy and paste the "Report Extract" sheet from the disclosure report into the utility CI calculator. The sheet may be renamed to "YYYY Report Extract" for consistency.
- 3. At the bottom of the table on this sheet, add a sum formula to total all the rows for each column. This can be used to check the correctness of the subsequent data transformations.
- 4. On the "Disclosure" sheet, repoint the "Unique" formula in the column A to the new "Report Extract" sheet. Rename the year in the sheet's name as necessary for consistency.
- 5. Similarly repoint the formulas in the remaining columns to new "Report Extract" sheet and update them as necessary to account for changes in number of rows on either sheet. Refer to the notes included in the top row for clarification on the included formula.
- 6. Go to the "Fuel Share" sheet. Adjust the formulas to accommodate any changes in the number of rows on the updated disclosure sheet. If new rows are needed, copy and paste the formulas from existing rows into the new rows and ensure correctness.
- 7. Go to the Utility tab, update the data validation on the utility selection pull down (cell C7) to include the correct number of rows on the updated fuel share sheet.
- 8. Also update the Vlookup formula in the utility name cell (cell C8) to include the correct set of rows on the updated fuel share sheet.
- 9. After selecting the correct values in the pull downs, the CI values for the selected utility for the new year should now be available in the section 3 of the Utility sheet.

3. Electric Power GHG Emission Results

The WA GREET model generates WTP GHG emission results for a range of power generation resources. The scope in WA GREET includes the upstream life cycle emissions plus emissions at the power plant. The sum of the upstream and power plant emissions is adjusted for a loss factor and available as an array of data from the electricity sheet as shown in Table 3.1. GREET identifies criteria pollutant and GHG emissions for the feedstock and fuel phase. Each phase represents the life cycle emissions adjusted for the transmission loss factor. The results are shown in energy and emissions power per mmBtu. The emissions per MJ are summarized at the bottom of each column along with the default result the selected grid mix.

Table 3.1. Well to Plug GHG Emissions for Power Generation

		Stationary Use	e: U.S. Mix	lix						
	Tota	I	Urk	oan						
	Feedstock	Fuel	Feedstock	Fuel						
Total energy	107,008	2,181,221	0.00	0.22						
Fossil fuels	104,451	1,774,716	0.00	6.10						
Coal	7,916	1,147,735	0.00	8.64						
Natural gas	71,714	589,174	0.00	0.08						
Petroleum	24,820	37,807	0.00	0.20						
Water consumption	11.697	178.02								
VOC	15.231	3.00	0.538	0.933						
CO	24.076	45.28	2.027	12.549						
NOx	42.665	81.36	3.230	23.405						
PM10	10.662	21.10	0.092	6.196						
PM2.5	2.102	10.09	0.066	3.165						
SOx	16.619	299.51	1.185	109.166						
BC	0.237	0.81	0.007	0.229						
oc	0.449	1.90	0.030	0.541						
CH4	332.510	4.37								
N2O	0.901	2.23								
CO2	7,050	153,064								
CO2 (w/ C in VOC & CO)	7,135	153,144								
GHGs	15,562	153,756								
GHGs, gCO2e/MJ	14.90	145.88	160.78							

		Transportation Us	se: WAMX Mix							
	7	Total Total	Url	ban						
	Feedstock	Fuel	Feedstock	Fuel						
Total energy	59,887	1,525,173.16								
Fossil fuels	59,043									
Coal	2,576									
Natural gas	48,781.84									
Petroleum	7,685.14									
Water consumption	4.194									
VOC	7.120	2.00	0.002	0.000						
CO	15.795	22.77	0.003	0.000						
NOx	23.121	63.34	0.007	0.000						
PM10	3.058	17.53	0.000	0.000						
PM2.5	0.694	11.46	0.000	0.000						
SOx	7.779	35.90	0.005	0.000						
BC	0.107	0.84	0.000	0.000						
oc	0.163	1.89	0.000	0.000						
CH4	165.234	4.21								
N2O	0.657	0.67								
CO2	3,804.254	58,484								
CO2 (w/ C in VOC & CO)	3,851	58,526								
GHGs	8,083	58,830								
GHGs, gCO2e/MJ	7.75	55.76	63.51							

The WA-GREET model also calculates the life cycle-based carbon intensity of electric power derived from individual fuel types, like residual oil or natural gas fired power plants. Such results are also affected by the power conversion efficiency as determind by the selected region in the model. The individual fuel to electric power CI results with the WAMX region selected from WA-GREET are shown below in the Table 3.2.

Table 3.2. Individual fuel type to power CI results

6) Power Plant Energy Use and Emissions:	per mmBtu of Elec	ctricity Ava	ilable at User	Sites (wall	outlets)							
	Stationary Use: W	Transportat WAMX		Oil-Fired Po	ower Plant	NG-Fired Pow	er Plant	Coal-Fired	d Power Plant	Biomass-Fired Power Plant		
Energy Use: Btu	Total	Urban	Total	Urban	Total	Urban	Total	Urban	Total	Urban	Total	Urbar
Residual oil	3,208		3,208		3,178,112		0		0		0	
NG	450,405		450,405		0		2,222,656		0		0	
Coal	314,854		314,854		0		0		3,082,187		0	
Biomass	21,144		21,144		0		0		0		4,732,384	
Nuclear	50,778		50,778		0		0		0		0	
Other energy sources	684,785		684,785		0		0		0		0	
Emissions: grams												
VOC	2.002	0.522	2.002	0.522	2.653	0.027	4.690	1.468	4.702	1.787	41.061	9.40
CO	22.771	6.318	22.771	6.318	43.329	0.433	51.910	16.248	39.808	15.127	1,446.235	331.18
NOx	63.339	22.052	63.339	22.052	1,983.430	19.834	46.750	14.633	467.973	177.830	880.780	201.69
PM10	17.527	5.975	17.527	5.975	32.891	0.329	2.992	0.937	125.065	47.525	908.677	208.087
PM2.5	11.461	3.854	11.461	3.854	18.232	0.182	2.992	0.937	77.421	29.420	643.503	147.362
SOx	35.897	12.851	35.897	12.851	1,705.898	17.059	1.351	0.423	323.162	122.801	198.653	45.492
BC	0.840	0.249	0.840	0.249	1.189	0.012	0.454	0.142	3.329	1.265	88.803	20.336
oc	1.895	0.550	1.895	0.550	0.960	0.010	1.448	0.453	6.271	2.383	209.782	48.040
CH4	4.212		4.212		10.101		2.326		3.134		150.140	
N2O	0.673		0.673		1.957		0.313		5.015		20.060	
CO2	58 479		58 479		270 294		131 951		308 269		-2 814	

3.1 Washington Utility CI Results

The results for the Washington power utilities for 2020 from the 2020 Washington Utility CI calculator are shown in the Table 3.3 below. The tables shows the specific mWh generated from each fuel type, % share of each fuel type, and, in the rightmost column, the CI for the given utility.

Table 3.3. Washington Utility CI Results

Claimant		Residual			Nuclear							Residual	Natural		Nuclear	Biomass	Hydroele	Geother		Solar PV		WTW CI
ID	Claimant Name	oil	Natural gas	Coal	power	Biomass	Hydroelectric	Geothermal	Wind	Solar PV	Total	oil%	gas %	Coal %	power %	%	ctric %	mal %	Wind %	%	Total %	g/kWh
	Alder Mutual Light	0	239	0	595	0	4,616	0	0	0	5,450	0.00%	4.39%	0.00%	10.92%	0.00%	84.70%	0.00%	0.00%	0.00%	100.00%	24.86
	Asotin County PUD #1	0	197	0	493	0	3,822	0	0	0	4,512	0.00%	4.37%	0.00%	10.93%	0.00%	84.71%	0.00%	0.00%	0.00%	100.00%	24.76
	Avista (WA) Benton County PUD #1	43,612	2,646,277 72.061	756,088 0	0 179.185	302,861	1,968,825	0	95,946 147,426	0	5,813,609 1,801,857	0.75%	45.52%	13.01%	9.94%	5.21%	33.87% 77.87%	0.00%	1.65% 8.18%	0.00%	100.00%	408.70 22.67
	Benton County POD #1	0	23.495	0	58 420	0	452 998	0	0	0	534.913	0.00%	4.00%	0.00%	10.92%	0.00%	84.69%	0.00%	0.00%	0.00%	100.00%	24.90
	Big Bend Electric Coop	0	62.203	0	61.815	0	479.324	0	0	0	603.342	0.00%	10.31%	0.00%	10.25%	0.00%	79.44%	0.00%	0.00%	0.00%	100.00%	57.68
	Centralia City Light	42	8,254	37,303	20,523	0	199,125	0	0	0	265,247	0.02%	3.11%	14.06%	7.74%	0.00%	75.07%	0.00%	0.00%	0.00%	100.00%	174.37
	Chelan County PUD #1	24	0	0	0	0	1,663,395	0	327	0	1,663,746	0.00%	0.00%	0.00%	0.00%	0.00%	99.98%	0.00%	0.02%	0.00%	100.00%	0.02
20	Cheney Light Department	0	14,577	0	14,463	0	112,151	0	0	0	141,191	0.00%	10.32%	0.00%	10.24%	0.00%	79.43%	0.00%	0.00%	0.00%	100.00%	57.76
	Chewelah Electric Department	0	915	0	2,275	0	17,640	0	0	0	20,830	0.00%	4.39%	0.00%	10.92%	0.00%	84.69%	0.00%	0.00%	0.00%	100.00%	24.90
	City of Blaine	0	3,535	0	8,789	0	68,150	0	0	0	80,474	0.00%	4.39%	0.00%	10.92%	0.00%	84.69%	0.00%	0.00%	0.00%	100.00%	24.90
	Clallam County PUD #1	0	29,298	0	72,850	0	574,455	0	0	0	676,603	0.00%	4.33%	0.00%	10.77%	0.00%	84.90%	0.00%	0.00%	0.00%	100.00%	24.55
	Clark County PUD #1	0	1,825,997	0	301,574	0	2,355,224	0	140,908	0	4,623,703	0.00%	39.49%	0.00%	6.52%	0.00%	50.94%	0.00%	3.05%	0.00%	100.00%	219.29
	Clearwater Power (WA) Columbia Rural Electric Assn (WA)	0	970 48 142	0	2,404 37,494	0	18,639 290,733	0	0	0	22,013 376,369	0.00%	4.41%	0.00%	10.92%	0.00%	84.67% 77.25%	0.00%	0.00%	0.00%	100.00%	24.98 71.42
	Consolidated Irrigation District #19	0	109	0	269	0	290,733	0	0	0	2,465	0.00%	4.42%	0.00%	10.91%	0.00%	84.67%	0.00%	0.00%	0.00%	100.00%	71.42 25.06
	Coulee Dam, Town of	0	746	0	1,856	0	14.392	0	0	0	16,994	0.00%	4.42%	0.00%	10.92%	0.00%	84.69%	0.00%	0.00%	0.00%	100.00%	24.89
	Cowlitz County PUD #1	127	439.736	2.622	387,284	67,647	3.156.681	0	348 336	558	4 402 991	0.00%	9.99%	0.06%	8.80%	1.54%	71.69%	0.00%	7 91%	0.00%	100.00%	57.54
	Douglas County PUD #1	1	266,738	656	0	0	741,599	0	0	292	1.009,286	0.00%	26.43%	0.06%	0.00%	0.00%	73.48%	0.00%	0.00%	0.03%	100.00%	147.25
	Eatonville Electric Department	0	1,220	0	3,030	0	23,494	0	0	0	27,744	0.00%	4.40%	0.00%	10.92%	0.00%	84.68%	0.00%	0.00%	0.00%	100.00%	24.93
41	Ellensburg Electric Division	0	8,858	0	22,027	0	170,796	0	0	0	201,681	0.00%	4.39%	0.00%	10.92%	0.00%	84.69%	0.00%	0.00%	0.00%	100.00%	24.90
	Elmhurst Mutual Power & Light	0	12,354	0	30,719	0	238,201	0	0	0	281,274	0.00%	4.39%	0.00%	10.92%	0.00%	84.69%	0.00%	0.00%	0.00%	100.00%	24.90
	Energy Northwest	0	1,051	0	2,615	0	20,276	0	0	0	23,942	0.00%	4.39%	0.00%	10.92%	0.00%	84.69%	0.00%	0.00%	0.00%	100.00%	24.89
	Fairchild Airforce Base	0	1,933	0	4,806	0	37,262	0	0	0	44,001	0.00%	4.39%	0.00%	10.92%	0.00%	84.68%	0.00%	0.00%	0.00%	100.00%	24.91
	Ferry County PUD #1	0	3,106	0	7,723	0	59,888	0	0	0	70,717	0.00%	4.39%	0.00%	10.92%	0.00%	84.69%	0.00%	0.00%	0.00%	100.00%	24.90
	Franklin County PUD #1	0	73,860	0	113,472	0	893,085	0	0	0	1,080,417	0.00%	6.84%	0.00%	10.50%	0.00%	82.66%	0.00%	0.00%	0.00%	100.00%	38.43
	Grant County PUD #2 Grays Harbor County PUD #1	0	4,016,058 39,168	0	5,371 97,394	8.040	1,172,023 755,205	0	33,610	0	5,227,062 899,807	0.00%	76.83% 4.35%	0.00%	0.10%	0.00%	22.42% 83.93%	0.00%	0.64%	0.00%	100.00%	425.99 25.28
	Inland Power & Light	0	94 273	0	108,726	0,040	843.076	0	0	0	1.046.075	0.00%	9.01%	0.00%	10.82%	0.89%	80.59%	0.00%	0.00%	0.00%	100.00%	50.49
	Jefferson County PUD #1	0	17.348	0	43 142	0	334.525	0	0	0	395.015	0.00%	4.39%	0.00%	10.39%	0.00%	84.69%	0.00%	0.00%	0.00%	100.00%	24.90
	Kalisnel Tribal Utility	0	1 220	0	3.030	0	23.497	0	0	0	27.747	0.00%	4.40%	0.00%	10.92%	0.00%	84.68%	0.00%	0.00%	0.00%	100.00%	24.93
51	Kittitas County PUD #1	0	5.104	0	12,233	0	94,855	0	0	0	112,192	0.00%	4.55%	0.00%	10.90%	0.00%	84.55%	0.00%	0.00%	0.00%	100.00%	25.77
Claimant		Residual			Nuclear							Residual	Natural		Nuclear	Biomass	Hydroele	Geother		Solar PV		WTW CI
ID	Claimant Name	oil	Natural gas	Coal	power	Biomass	Hydroelectric	Geothermal	Wind	Solar PV	Total	oil %	gas %	Coal %	power %	%	ctric %	mal %	Wind %	%	Total %	g/kWh
52	Klickitat County PUD #1	0	80,957	0	42,921	0	376,883	0	0	0	500,761	0.00%	16.17%	0.00%	8.57%	0.00%	75.26%	0.00%	0.00%	0.00%	100.00%	90.07
	Kootenai Electric Coop	0	0	0	0	0	0	0	0	0	0	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00
	Lakeview Light & Power	0	11,319	0	28,146	0	218,245	0	0	0	257,710	0.00%	4.39%	0.00%	10.92%	0.00%	84.69%	0.00%	0.00%	0.00%	100.00%	24.90
	Lewis County PUD #1	0	38,598	0	95,975	0	748,174	0	59,989	0	942,736	0.00%	4.09%	0.00%	10.18%	0.00%	79.36%	0.00%	6.36%	0.00%	100.00%	23.21
	Mason County PUD #1	0	3,233	0	8,038	0	67,503	0	0	0	78,774	0.00%	4.10%	0.00%	10.20%	0.00%	85.69%	0.00%	0.00%	0.00%	100.00%	23.27
	Mason County PUD #3	0	29,262 1 351	0	72,761	0	573,771 26,063	0	18,628	210	694,632	0.00%	4.21%	0.00%	10.47%	0.00%	82.60% 84.69%	0.00%	2.68%	0.03%	100.00%	23.88
	McCleary Light & Power Milton Electric Division	0	2 493	0	3,361 6,198	0	48.057	0	0	0	30,775 56.748	0.00%	4.39%	0.00%	10.92%	0.00%	84.69%	0.00%	0.00%	0.00%	100.00%	24.89
	Modern Electric Division	0	10.219	0	25,412	0	197.048	0	0	0	232,679	0.00%	4.39%	0.00%	10.92%	0.00%	84.69%	0.00%	0.00%	0.00%	100.00%	24.91
	Nespelem Valley Elec Coop	0	2 884	0	7,172	0	55,609	0	0	0	65,665	0.00%	4.39%	0.00%	10.92%	0.00%	84 69%	0.00%	0.00%	0.00%	100.00%	24.90
	Northern Lights (WA)	0	5	0	13	0	104	0	0	0	122	0.00%	4.10%	0.00%	10.66%	0.00%	85.25%	0.00%	0.00%	0.00%	100.00%	23.26
	Ohop Mutual Light	0	3,990	0	9,917	0	76,896	0	0	0	90,803	0.00%	4.39%	0.00%	10.92%	0.00%	84.68%	0.00%	0.00%	0.00%	100.00%	24.91
73	Okanogan County Electric Coop	0	0	0	0	0	0	0	0	0	0	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00
157	Okanogan County Electric Coop	0	6,712	0	6,934	0	53,768	0	0	0	67,414	0.00%	9.96%	0.00%	10.29%	0.00%	79.76%	0.00%	0.00%	0.00%	100.00%	55.72
72	Okanogan County PUD #1	0	42,645	113	43,783	0	525,057	0	22,034	0	633,632	0.00%	6.73%	0.02%	6.91%	0.00%	82.86%	0.00%	3.48%	0.00%	100.00%	37.86
	Orcas Power & Light Coop	0	0	0	0	0	0	0	0	0	0	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00
	Orcas Power & Light Coop	0	9,878	0	24,563	0	190,465	0	0	0	224,906	0.00%	4.39%	0.00%	10.92%	0.00%	84.69%	0.00%	0.00%	0.00%	100.00%	24.90
	Pacific County PUD #2	0	28,884	0	32,135	0	249,175	0	0	0	310,194	0.00%	9.31%	0.00%	10.36%	0.00%	80.33%	0.00%	0.00%	0.00%	100.00%	52.15
	Pacific Power (WA)	957	1,930,950	1,604,372	11,329	0	619,337	0	290,848	0	4,457,793	0.02%	43.32%	35.99%	0.25%	0.00%	13.89%	0.00%	6.52%	0.00%	100.00%	641.06
	Parkland Light & Water Pend Oreille County PUD #1	0	5,064 74,275	0	12,592 13.920	0	97,640 892.365	0	0	0	115,296 980,560	0.00%	4.39% 7.57%	0.00%	10.92%	0.00%	84.69% 91.01%	0.00%	0.00%	0.00%	100.00%	24.90 42.07
	Peninsula Light	0	26.925	0	66.953	0	892,365 519.161	0	77.722	0	690,761	0.00%	3.90%	0.00%	9.69%	0.00%	75.16%	0.00%	11.25%	0.00%	100.00%	22.10
	Port Angeles Light Operations	0	11 903	0	29,602	0	229,534	0	0	0	271.039	0.00%	4.39%	0.00%	10.92%	0.00%	84 69%	0.00%	0.00%	0.00%	100.00%	24.10
	Port of Seattle	0	5,769	0	14,344	0	111,229	0	0	0	131.342	0.00%	4.39%	0.00%	10.92%	0.00%	84.69%	0.00%	0.00%	0.00%	100.00%	24.90
	Port Townsend	0	0	0	0	0	0	0	0	0	0	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00
90	Puget Sound Energy	9,430	8,942,796	4,984,651	40,693	2,087	5,234,658	3,500	2,282,111	206,950	21,706,876	0.04%	41.20%	22.96%	0.19%	0.01%	24.12%	0.02%	10.51%	0.95%	100.00%	484.53
	Richland Energy Services	0	107,961	0	93,718	0	726,699	0	0	399	928,777	0.00%	11.62%	0.00%	10.09%	0.00%	78.24%	0.00%	0.00%	0.04%	100.00%	64.95
	Ruston, Town of	0	0	0	0	57	2,638	28	766	0	3,489	0.00%	0.00%	0.00%	0.00%	1.63%	75.61%	0.80%	21.95%	0.00%	100.00%	1.10
	Seattle City Light	0	348,831	0	457,743	0	7,909,407	0	472,131	0	9,188,112	0.00%	3.80%	0.00%	4.98%	0.00%	86.08%	0.00%	5.14%	0.00%	100.00%	21.30
	Skamania County PUD #1	0	6,254	0	15,552	0	120,589	0	0	0	142,395	0.00%	4.39%	0.00%	10.92%	0.00%	84.69%	0.00%	0.00%	0.00%	100.00%	24.90
	Snohomish County PUD #1	0	249,576	0	617,771	65,472	4,896,819	0	722,952	80,280	6,632,870	0.00%	3.76%	0.00%	9.31%	0.99%	73.83%	0.00%	10.90%	1.21%	100.00%	21.99
	Solar City (WA)	0	0	0	0	0	0	0	0	0	0	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00
		0	1.691	0	4.205	0	32.608	0	0	0	38,504	0.00%	4.39%	0.00%	10.92%	0.00%	84.69%	0.00%	0.00%	0.00%	100.00%	24.90
99	Steilacoom Electric Utility																					
99 101	Sumas, City of	0	1,333	0	3,315	0	25,702	0	0	0	30,350	0.00%	4.39%	0.00%	10.92%	0.00%	84.69%	0.00%	0.00%	0.00%	100.00%	
99 101 102	Sumas, City of Tacoma Power	0	1,333 112,721	0	3,315 280,288	0 36,019	3,864,226	18,000	488,871	198	4,800,323	0.00%	2.35%	0.00%	5.84%	0.75%	80.50%	0.37%	10.18%	0.00%	100.00%	13.82
99 101 102 103	Sumas, City of Tacoma Power Tanner Electric Coop	0 0	1,333 112,721 4,297	0 0	3,315 280,288 10,683	0 36,019 0	3,864,226 82,838	18,000	488,871 0	198	4,800,323 97,818	0.00%	2.35% 4.39%	0.00%	5.84% 10.92%	0.75%	80.50% 84.69%	0.37%	10.18%	0.00%	100.00% 100.00%	13.82 24.90
99 101 102 103 106	Sumas, City of Tacoma Power Tanner Electric Coop Vera Water & Power	0 0 0	1,333 112,721 4,297 21,245	0 0 0 0	3,315 280,288 10,683 23,771	0 36,019 0 0	3,864,226 82,838 184,322	18,000 0 0	488,871 0 0	198 0 0	4,800,323 97,818 229,338	0.00% 0.00% 0.00%	2.35% 4.39% 9.26%	0.00% 0.00% 0.00%	5.84% 10.92% 10.37%	0.75% 0.00% 0.00%	80.50% 84.69% 80.37%	0.37% 0.00% 0.00%	10.18% 0.00% 0.00%	0.00% 0.00% 0.00%	100.00% 100.00% 100.00%	13.82 24.90 51.88
99 101 102 103 106 88	Sumas, City of Tacoma Power Tanner Electric Coop	0 0	1,333 112,721 4,297	0 0	3,315 280,288 10,683	0 36,019 0	3,864,226 82,838	18,000	488,871 0	198	4,800,323 97,818	0.00%	2.35% 4.39%	0.00%	5.84% 10.92%	0.75%	80.50% 84.69%	0.37%	10.18%	0.00%	100.00% 100.00%	13.82 24.90

Utilities in Washington also report their GHG emissions to the Washington Department of Commerce as part of a state utility GHG emission reporting program. The carbon intensity results emissions results per this direct reporting are shown here in comparison with the utility CI results as modelled in WA-GREET. It should be noted that unlike the CI results from WA-GREET, the CI results from the self-reporting program only represent the power plant emissions, and do not appear to include the transmission losses. The comparison of the two dataset is shown below in the form of a state electric supply curve in the Figure 3.1 below.

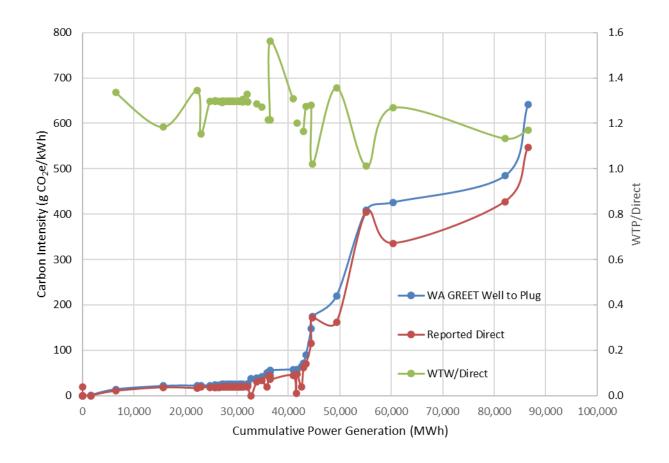


Figure 3.1. Comparison of utility CI results from WA GREET and self reported data

References

- ANL, 2015. GREET 2015: The Greenhouse Gases, Regulated Emssions, and Energy Use in Transportation (GREET) Model. Version 1
- ARB, 2008. California Reformulated Gasoline Blendstock for Oxygenate Blending CARBOB from Average Crude Refined in California. Calif. Reformul. Gasol. Blendstock Oxyg. Blending CARBOB from Aver. Crude Refin. Calif. 14 SRC G.
- ARB, 2014c. California-GREET Model, Version2.
- ARB, 2014d. ARB Internal LCFS Pathway Production of Biomethane from the Mesophilic Anaerobic Digestion of Wastewater Sludge at a Publicly-Owned Treatment Works 79, 894–894. doi:10.1002/cplu.201490022
- ARB, Life Cycle Associates, 2009. California-GREET Model, Version 1.8b. ARB, based on GREET 1.8b by ANL. http://www.arb.ca.gov/fuels/lcfs/lcfs.htm.
- ISO, 2006. ISO management-Life cycle assessment-Requirements and guidelines, (International organization for Standardization) 14044 SRC.
- JEC, 2008. Well-to-Wheels analysis of future automotive fuels and powertrains in the European context, v 3.0. http://ies.jrc.ec.europa.eu/WTW.
- Unnasch, S., Browning, L., CARB, M., 2000. Fuel Cycle Energy Conversion Efficiency Analysis.". Calif. Energy Comm. Air Resour. Board, Sacramento, CA.
- Unnasch, S., Chan, M., 2007a. "Full Fuel Cycle Assessment: Tank to Wheels Emissions and Energy Consumption." prepared by TIAX, LLC, CEC-600-2007-003-D.
- Unnasch, S., Pont, J., 2007b. Full Fuel Cycle Assessment: Well to Tank Energy Inputs, Emissions and Water Impacts. Tiax LLC, CEC.
- Unnasch, S., Riffel, B., Sanchez, S., Junquera, V., Plevin, R., 2010. Review of Transportation Fuel Life Cycle Analysis: Life Cycle Associates Report LCA.7002.24P.2010; Prepared for Coordinating Research Council, 2010.
- Wang, M., 1999a. Transportation Fuel-Cycle Analysis: What Can the GREET Model Do? presented at U.S. Environmental Protection Agency Fuel-Cycle Analysis Becomes Necessary When Comparing Different Fuels.
- Wang, M., 1999b. GREET 1.5--Transportation Fuel Cycle Model, Volume 2: Appendices of